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ABSTRACT 

For development of parallelizing compilers 

application test suites used are either single file based 

programs or algorithm structures. The full scale 

applications primarily commercial pose many 

challenges which are seldom addressed. Thus for 

these applications automatic parallelization is 

considered sometimes to be inconceivable. This paper 

tries to surface the impediments to be addressed so 

that the parallelization techniques may be applied to 

these commercial programs. A benchmark suite 

specifically designed to exhibit the computing needs 

found in industry has been used. Benchmarks are 

from High Performance Group of the Standard 

Performance Evaluation Corporation SPEC. Parallel 

and serial versions of both applications are available. 

The parallel variants are hand parallelized with shared 

memory directives either at the largest level of 

granularity or in a hybrid manner where MPI is used 

at the largest level of granularity and OpenMP 

directives are used at a lower level. 

 

In this paper the parallel variants are compared with 

the automatically parallelized serial codes. Polaris 

parallelizing compiler is employed which takes 

language (formula based) codes and inserts OpenMP 

directives around loops determined to be dependence 

free. Various challenges faced by an automatic 

parallelizing compiler were found when dealing with 

full applications modularity, legacy optimizations 

symbolic analysis, array variations and issues arising 

from input output operations. The results presented in 
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this paper shall benefit parallelizing compilers with 

capabilities for handling large scale science and 

engineering applications  

 

Keywords: Parallelization, Computational 

Applications, Compiler Techniques 

 

1.  INTRODUCTION 

Any programming language, compiler, operating 

system and system architecture will ultimately have to 

improve upon its functionality and performance for 

applications that have commercial existence. 

Commercial applications are generally voluminous in 

terms of line of codes and data sets are widely used and 

are usually not freely available. Most programs that are 

being used to drive and evaluate the design of new 

computer systems technology do not fit this definition 

of commercial applications. Systems research typically 

uses benchmarks that have reasonably short execution 

times and are publicly available. Short runtimes are 

important because, it is not unusual that in the course of 

a research project a test program is run many times. If 

architecture simulators are used, these programs run 

two to three orders of magnitude slower than on an 

ordinary computer. Public availability of test programs 

is essential for all scientific research because research, 

results are of small value if cannot be reproduced by 

other research groups.  

 

The long term goal of the research project described in 

this paper is to advance automatic parallelization 

technology for high performance computers. A test 

application for such research typically includes suites 

such as the SPEC CPU, Perfect, or Linpack 

benchmarks. In this paper, study two programs that 

come close to definition of commercial applications is 

been done. Here two applications are used from the 

SPEChpc benchmark suite, called SPECseis and 

SPECchem. Both codes are large scale computational 

applications that reflect problems faced in commercial 

settings. Applications are being used that are 

commercially relevant while still obtaining results that 

can be reproduced and shared publicly.  

SPECseis [5] was developed by ARCO beginning in 

1993 to gain an accurate measure of the performance of   

computing systems as it relates to the seismic 

processing industry for procurement of new computing 

resources. The current SPECseis is missing Kirko and 

pre stack migration techniques. 

Other application package, SPECchem [4] is used to 

simulate molecules ab initio, at the quantum level. It is 

a current research effort under the name of GAMESS at 

the Gordon Research Group of Iowa State University 

and is of interest to the pharmaceutical industry. Like 

SPECseis, SPECchem is often used to exhibit 

performance of high performance systems among the 

computer vendors. 

 

The contribution of this paper is to show program 

patterns of commercially relevant HPC applications that 

pose significant problems for automatic parallelization. 

Both SPECseis and SPECchem are parallelized using 

OpenMP. For this study, commented out the OpenMP 

directives and used the manual parallelization as 

standard for evaluating how well parallelizing compiler 

performs. Then, reasons are analyzed that why a 

parallelizing compiler could not detect the same level of 

parallelism. The compiler used is the Polaris translator 

[1], one of the most advanced parallelizing compilers to 

date. Section 2, describes five categories of challenges 
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faced by parallelizing compilers. Sections 2.1 describe 

issues arising from the fact that large applications 

naturally have a very modular structure. Section 2.2 

shows examples of “Endowment Accumulation” that 

compilers must recognize. Section 2.3 discusses the 

need for advanced symbolic analysis, Section 2.4 deals 

with the issue of array variations at subroutine 

boundaries; and Section 2.5 describes problems in the 

presence of input output operations.  Section 3 

concludes the paper. 

 

2.  IMPEDIMENTS OF AUTOMATIC 

PARALLELIZING COMPILERS 

Using compiler tools on large-scale applications it is 

found that success rate is significantly less. Here present 

code examples that illustrate these challenges are 

described below and discuss possible improvements to 

compiler technology. The regular access patterns 

representative of computational codes can be extracted 

from a full application suite of codes, automatic 

parallelizing compilers and parallelization techniques. 

 

2.1. Modularity 

Large-scale applications naturally have a tendency to be 

structured into many modules.  Modularity is a general 

software engineering tool. Moreover, library modules 

may be included that perform some of the desired 

functionality. Full applications have deep levels of 

hierarchy that include abstractions with interfaces to the 

different computational routines. Modular programs 

generally raise the compiler issue of inter procedural 

analysis. In this work, issue has become significantly 

important. To obscure this issue, it is not always known 

at compile time which of the functions will be called 

during a specific execution. 

 

            Do jproc = jtop, nproc 

IF (name .EQ.’DCON’)  

 THEN 

            IF (X . EQ . ‘A’) 

 THEN 

CALL 

DCONA(ldim,maxtrc,otr,nra,ra,nsa,sa,abort,ipr)  

           ELSE IF (x .EQ. 'B')  

THEN  

CALL 

DCONB(ldim,maxtrc,otr,nra,ra,nsa,sa,abort,ipr) 

 ELSE IF ( name. EQ. ‘DGEN’) 

              THEN 

           ELSE IF (name.EQ. ‘DMOC’) 

     THEN 

    ENDDO   

  

Figure 1. Driver Routine, SEISPROC, from SPECseis.  

 

2.1.1. Functions of Dynamic Application 

Both of applications include a large body of 

functionality. Only a small part of the code is used in 

any specific execution. For example SPECseis 

typically runs in four “phases”, called data generation, 

data stacking, depth migration and time migration. 

The specific routines invoked are determined by the 

input data. Because of this, compiler could not 

determine at compile time what routines would be 

called.  

 

The code example in Figure 1 shows how a driver 

routine is used to implement this form of dynamic 

subroutine invocation in SPECseis. The variable name 

is derived from input data. Accordingly, the compiler 
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cannot determine which routines are called or in 

which order are called and concludes that there are 

cross iteration dependencies within this region. 

 

To triumph over the problem of not knowing which 

routines will be called at compile time would require 

program knowledge. With SPECseis, this would mean 

that the compiler must know that the seismic routines 

are only applied to the seismic traces in certain orders. 

The compiler would also have to understand that the 

data originates from only few locations in the code. 

With this knowledge and with extensive expression 

propagation an automated compiler may be able to 

find parallelism encompassing a driver routine. 

 

2.1.2. LINGUAL HURDLES 

Another result of code modularity is multilingual 

applications; SPECseis has a Fortran 77 main 

program, which calls a C routine, to allocate memory. 

The code sections in Figure 2 illustrate these 

situations. 

 

As new languages become widely used and 

compilation techniques for higher level languages of 

the object oriented flavor are developed to produce 

efficient code and expected to see the instances where 

the optimizing compiler must cross language barriers 

within a single application to grow with time. To 

overcome this hurdle, the compiler must perform 

interprocedural analysis across languages. 

 

 

 

 

 

                          

 

 

 

 

 

 

Figure 2. Multi-Lingual Characteristics of SPECseis 

 

2.1.3. Extensible Libraries 

These applications make use of software libraries. One 

characteristic of these library routines is that it tends to 

have many options and parameters. Figure 3 shows an 

example from SPECseis. 

 

 The library routine SCOPY is used to copy one 

vector into another with any stride for either of the 

two vectors. Similar examples could be given from 

SPECchem, such as the DDOT routine shown later in 

Figure 4. DDOT is almost always called with the 

strides of the two vectors ( incx and incy) equal to 1. 

 

2.2. Endowment Accumulation 

SPECseis and SPECchem both use endowment code 

for low level mathematical functionality. SPECseis 

includes 35 IEEE library routines to perform Fast 

Fourier Transformations. SPECchem includes 63 

matrix routines, some of which were derived from 

Linpack code of 1978. These codes tend to be 

optimized for performance, but may hinder additional 

compiler optimizations. For example, the DDOT 

routine in SPECchem simply produces the dot product 

of two vectors. The simple code for the general case is 

shown on the left side of Figure 4.On the right, a form 

program SEIS 

 

open(parameter file) 

call seisprop() 

 S$OMP PARALLEL 

call cproc() 

 S$OMP PARALLEL 

END 
End 

 

subroutine 

seisproc(otr,ra,sa)  

real otr(*),ra(*),sa(*) 

do jproc=jtop,nproc 

int sbfread_(,frame,volume,trc,xyz) 

int sbfreadt _(,frame,volume,trc,xyz) 

int sbfwrite_(,frame,volume,trc,xyz) 

int sbfrdfrm_(handle,frame,buf) 

int *handle, *frame; 

float *buf; 

{ 

FILE *sbf; 

fseek(sbf,frame); 
rlen=read(sbf->tfp,buf,sbf->tflen); 

}                                                                        

static float *otr,*ra,*sa; 

int cproc_(lotr,lra,lsa) 

int *lotr, *lra, *lsa;{ 

otr=(float*)malloc(*lotr*size of (float)); 

ra=(float*)malloc(*lra*sizeof(float)); 

sa=(float*)malloc(*lsa*sizeof(float)); 

seisproc_( otr, ra, sa );} 

 main.s 

seis.m 

subroutine vsbf_lint(…) 

ier=sbfrdfrm(handle,id3,sa

) 

vsbf.x 

Main.f 
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of DDOT is shown that was transformed for improved 

locality of data references. 

               SUBROUTINE SCOPY (n, a, inca, b, incb) 

 Copy a vector with stride, BLAS version 

INTEGER n, inca, incb, i, ia, ib 

REAL a (*), b (*) 

 If stride is negative, start from end of vector 

IF (inca .LT. 0) THEN 

ia = 1 + inca*(1-n) 

ELSE 

ia = 1 

ENDIF 

IF (incb .LT. 0) THEN 

ib = 1 + incb*(1-n) 

ELSE 

ib = 1 

ENDIF 

Loop and copy from a to b 

DO i = 1, n 

b(ib) = a(ia) 

ia = ia + inca 

ib = ib + incb 

ENDDO 

RETURN 

END 

Figure 3. Library Subroutine SCOPY of SPECseis. 

 

DOUBLE PRECISION FUNCTION  

DDOT(n,dx,* incx,dy,incy) 

DOUBLE PRECISION dx(*),dy(*) 

DDOT = 0.0D+00 

dtemp = 0.0D+00 

ix = 1 

iy = 1 

IF(incx .LT. 0) ix = (-n+1)*incx + 1 

IF(incy .LT. 0) iy = (-n+1)*incy + 1 

DO 10 i = 1,n 

dtemp = dtemp + dx(ix)*dy(iy) 

ix = ix + incx 

10 iy = iy + incy 

DDOT = dtemp 

RETURN 

END 

 USES UNROLLED LOOPS FOR 

INCREMENTS EQUAL TO ONE. 

C JACK DONGARRA, LINPACK, 3/11/78. 

20 m = MOD (n,4) 

IF (m .EQ. 0) GO TO 40 

DO 30 i = 1,m 

30 dtemp = dtemp + dx (I)*dy(I) 

IF( n .LT. 4 ) GO TO 60 

40 mp1 = m + 1 

dtloc = 0.0D+00 

DO 50 i = mp1, n, 4 

50 dtloc = dtloc + dx(i)*dy(i) + dx(i + 

1)*dy(i + 1)  

+* dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 

3) 

dtemp = dtemp + dtloc 

60 DDOT = dtemp 

RETURN 

END 

 

Figure 4. Library Subroutine DDOT of SPECchem. 

 

DO 310 J = 1, m, mxrows 

jjmax = min(m,j+mxrows-1) 

ij = j*(j-1)/2 

DO 300 jj=j,jjmax 

DO 200 i = 1,jj 
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ij = ij+1 

h(ij)=hij 

 

Figure 5. Including Intrinsics in the Symbolic 

Language. 

 

Compiler can find that the DO 50 loop is parallel. 

However, subroutine DDOT is called within a triply-

nested loop which is also parallel. The parallelism of 

the outermost loop can be recognized in the situation 

of the generic DDOT code (the code on the left) but, 

the compiler is unable to recognize this fact with the 

transformed code. 

 

Several problems are that hand transformations in 

endowment codes may have been designed for 

previous generations of high performance computer 

systems. For today's machines the transformation may 

no longer be beneficial or may even degrade 

performance. SPECseis includes many lower level 

FFT routines that date back to an IEEE Press book of 

1979. These routines are optimized to perform Fourier 

transforms with minimal memory requirements by 

writing the output to the supplied input array. Such 

accumulations introduce memory related 

dependences, limiting the performance a parallelizing 

compiler can obtain. 

 

If the compiler is enabled to recognize specific 

endowment accumulations then the previous 

accumulations could be undone and the compiler 

could perform its own. Another approach would be to 

empower the compiler with the ability to handle all 

the functions and complexities added by endowment 

accumulations.  

 

2.3. Symbolic  Determination 

Parallelizing compiler has its capability to detect data 

accesses that do or do not access the same memory 

location. This capability involves the analysis of array 

subscript expressions. Several compilers in current 

use on high performance systems can only analyze 

such expressions if they are affine. Affine subscript 

expressions contain linear combinations of the 

iteration variables of enclosing loops. An example 

from subroutine TFTRI of SPECchem shows the 

propagated expression used to index an array in loop  

DO 200: 

 x(14+i1+lhc+(jj0*2+(-55)*j1+(11)*jj0+ 25 *j1*    

2)/2+5*j1*jj0) = hij0 

 

TFTRI deals with a triangular matrix where the 

subsequent j(j-1)=2 elements of the work array are 

accessed in the next iteration. Variables j, jj0, and i1 are 

loop indices of a triply nested loop. The Polaris 

parallelizer could propagate and analyze data 

dependences in the presence of the above polynomial 

expressions. Therefore, it was able to find the outermost 

loop of TFTRI, DO 310, to be parallel. However,  here 

found no other compiler with this capability. Codes 

emphasize the importance of such symbolic analysis 

techniques. 

n2 = 1 

10 IF (n2 .GE. n .OR. n .EQ. 65536) RETURN 

n2 = 2*n2 

mag = mag+1 

GOTO 10 

END 

n2 = 2**mag 

DO 30 i=1,n2 
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Figure 6. Recognition of Power-of-2 Loops 

 

In Figure 5, MIN and MAX functions require symbolic 

analysis to incorporate inequality relations. 

 

Since the size of the data (such as m) is not ensured to 

be a multiple of mxrows, here need to include such 

functions as MIN, MAX, MOD, FLOOR, and CEIL in 

symbolic analysis. 

 

SPECseis poses another challenge to symbolic 

analysis. Since SPECseis relies heavily on fast 

Fourier transforms, loops are found that access up to 

the power of two greater than a dimension of the data. 

The result of this is that some loops access up to n 

elements of an array where n2 is 2[log2n] of the data 

size, but Polaris gives up with symbolic analysis when 

dealing with logarithmic and exponential expressions.  

2.4. Array Variations and Type Change 

Interprocedural analysis which is above described is a 

very important technique for dealing with modular 

programs. Subroutine inline expansions to achieve the 

same effect are used by the Polaris compiler. A 

problem that both of these techniques face is that 

arrays may assume different shapes and have different 

types in a subroutine and its caller.  

2.4.1. Array  Variation 

The caller routine shapes the array as a D array and the 

callee shapes it as 1D. No out of bounds indexing 

occurs by default, this is assumed by FORTRAN 

compilers. According to this assumption v(1,i) and 

v(1,j) in the following example will never overlap as 

long as i ≠ j. These two portions of the array v are 

passed as two separate vectors into the DAXPY 

subroutine, which sees the two parameters as two 

single dimension arrays. An example of array 

variations is given in Figure 7. 

 

Multiple problems occur when subroutine DAXPY is 

in lined into SCHMD. When Polaris inline DAXPY 

into SCHMD, it linearizes the array index to the D 

array and accesses v as a one dimensional array. 

Then, polaris cannot determine that the access to 

v(1,i) which is now v(i5+(i3-1)*ndim does not 

overlap with v(1,j) which is now v(i5+(i3-

1+j1)*ndim).  

 

         DO i5 = 1, num0, 1   

 v(i5+(i3-1+j1)*ndim) = v(i5+(i3-

1+j1)*ndim) + v(i5+(i3-1)*ndim)*dum1 

        ENDDO 

 

Another example of variations in Figure 8 shows a 

situation where portions of a large array declared in 

the main program of SPECseis are passed into several 

subroutines.  

Caller Routine: 

SUBROUTINE SCHMD(v,m,n,ldv) 

DIMENSION v(ldv,n) 

CALL DAXPY(n,dum,v(1,i),1,v(1,j),1) 

Callee Routine: 

SUBROUTINE DAXPY(n,da,dx,incx,dy,incy) 

DIMENSION dx(*),dy(*) 

DO 10 i = 1,n 

dy(iy) = dy(iy) + da*dx(ix) 

ix = ix + incx 

  iy = iy + incy 

 

         Figure 7. Example of Array Variations.  
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CALL SEICTRI3D 

( q0(1,1,k), sa(ka), sa(kb), sa(kaa), sa(kbb), 

& sa(kbnx1), sa(kbnxn), sa(kbbnx1), 

sa(kbbnxn), 

& sa(kbny1), sa(kbnyn), sa(kbbny1), 

sa(kbbnyn), 

& sa(kze), sa(kzf), nx, ny ) 

 

           Figure 8. Array Carving. 

 

In Figure 8, Work array, sa, is passed into 

SEICTRI3D. If inline SEICTRI3D into the caller 

routine, then the implicit non alias assumption of 

FORTRAN (the assumption that none of the 

parameters to a subroutine are aliased) is lost. Only 

with the non aliasing assumption of FORTRAN 77 

know that the accesses to the segments of sa do not 

overlap. 

 

2.4.2. Transformations of Array Type  

When the type of an array transforms between the 

caller and callee subroutine then similar problem 

arises. Figure 9 gives an example from SPECseis 

where some arrays are declared real and used as 

complex within the callee subroutines. This is because 

it is a large work array where one set of routines use a 

portion of the work array as a smaller real array and 

another portion as a smaller complex array.  

 

2.5.  Loop Exits and IO Statements 

Polaris could not determine that one of the main loops 

of SPECchem (TWHEIP do#3) is parallel was 

because of an abort statement. The abort statement is 

executed only in rare cases but the compiler simply 

sees a conditional and an exit from the loop. In this 

case the abort statement was hidden deep in a nest of 

subroutine calls, loop nests, and conditionals, 

illustrated in Figure 10. The exits occur only in cases 

of errors, cases where correct program execution is 

not applicable then the compiler should ignore 

program exits when searching for data dependencies.  

Figure 11 gives another example of conditions that 

section portions of code.  

 

Caller Routine: 

SUBROUTINE MG3D_ZSTEP(...,sa,...) 

  This routine propagates wave-field 1 depth 

step. 

REAL sa(*) 

  Extrapolate in x and y directions 

CALL MG3D_XTRAP(...,sa,sa(ksa)) 

Callee Routine: 

SUBROUTINE MG3D_XTRAP(...,vel,sa) 

REAL vel(nx,ny) 

COMPLEX sa(*) 

Figure 9. Array Type Changing 

 

SUBROUTINE TWHEIP 

DO iit = 1, npar 

IF (ijkl .EQ. 1) THEN 

CALL GENRAL 

       DO 480 kg = 1, ngc 

      DO 460 lg = 1, lgmax 

     DO 440 n = 1, nij 

IF (nroots .GE. 6) CALL ROOT6P 

     DO k = 3,n 

CALL RYSNOD 

CALL ABRT 

CALL abort() 
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SUBROUTINE RYSNOD 

IF (prod .GE. zero) THEN 

IF (maswrk) WRITE(6,15) m, k 

CALL ABRT 

STOP 

endif 

 

Figure 10. Program Exit within a Loop. 

 

           IF (kdepth .EQ. 0) THEN 

          Transpose data if first time through 

            CALL JSYNC() 

          Stored data volume is ( x, f, y ), with y spread 

across nodes. 

          Use transpose operations to spread frequencies 

across  nodes. 

      ( x, f, y ) -> ( x, y, f ) 

CALL DTRAN132C( nx, nfp, nyp, ra, sa ) 

  If up to number of lines, quit 

ELSE IF (kdepth .GE. nz) THEN 

ntro = 0 

IF (node .NE. master) return 

CALL SYSOHDR('MG3D') 

WRITE (ipr,9010) tload, tcomp, tcorr, tcomm, 

flopsm, 

* atee, ratec, flopsm/(tcomp + tcorr + tcomm) 

return 

endif 

 

Figure 11. Rarely Executed Code Sections 

These two conditional sections are executed only once 

per program run, Polaris assumes that could be 

executed each time this code section is invoked. As a 

result, Polaris sees a possible call to jsync 

(synchronize MPI processors), DTRAN132C 

(Transpose the distributed dimension), a call to 

SYSOHDR (prints out info to the screen), and a 

premature return within every invocation of this code 

section. The value of ntro, which is important for the 

following seismic routines, is unknown at the end of 

this code section. (Ntro is the number of traces out of 

this seismic routine which the next seismic routine in 

the pipeline will process sees the discussion on the 

driver routine of SPECseis in Section 2.1.1. 

 

2.6. Large-scale Applications Issues 

It is presented that the examples and compiler issues 

for which the context of large, commercially relevant 

applications makes a difference. Number of problems 

faced by compiler that are believed, are equally 

important in smaller applications. Parallelizing 

compilers are well capable of analyzing Fortran DO 

loops for parallelism. 

 

Important general issue is data dependence analysis is 

needed in the presence of subscripted subscripts and 

pointers. It is found that subscript arrays are often only 

written during the initialization of a program or 

program phase and from then on are constant. 

 

3. CONCLUSIONS 

Parallelization is not yet at the level of being fully 

automatic. Using codes can be seen little success of 

automatic parallelization. There are clear steps that 

may be taken to empower automatic parallelizing 

compilers to produce efficient parallel code. In this 

paper it has been pointed out several key areas that the 

compiler community should focus on to enable 

automatic parallelization to become beneficial to 
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developers of large scale applications. The first aspect 

of large applications is the growing amount of 

modularity. The endowment libraries are another 

characteristic of the codes. It is important that 

compilers be able to transform optimizations within 

endowment codes that no longer apply to modern 

architectures.  

Symbolic analysis becomes increasingly complex 

with larger application codes. Additionally, 

expressions contain intrinsic functions, such as 

logarithms and Modular terms where symbolic 

analysis and manipulation capabilities need continued 

improvement. The compiler’s ability to deal with this 

variety of issues is critical for successfully optimizing 

large scale applications. 

Input/output operations are another impediment to 

successful parallelization. The compiler would have 

to recognize that certain I/O statements are executed 

rarely or only in error situations.  

 

The study presented in this paper is only a small step 

in the direction of understanding the characteristics of 

large scale applications. Analyzing such applications 

takes significant effort. Many more, similar studies 

will be necessary to help the current generation of 

compilers to become truly useful tools for the user of 

real world commercial applications.  
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