
International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

PREDICAMENTS IN AUTOMATIC PARALLELIZATION OF

COMPUTATIONALLY EXPENSIVE APPLICATIONS

Nahar Priyank Hasmukhbhai

Research Scholar

Shri Venkateshwara University

Uttar Pradesh, India

Dr. Parveen Kumar

Professor

Shri Venkateshwara University

Uttar Pradesh, India

ABSTRACT

For development of parallelizing compilers

application test suites used are either single file based

programs or algorithm structures. The full scale

applications primarily commercial pose many

challenges which are seldom addressed. Thus for

these applications automatic parallelization is

considered sometimes to be inconceivable. This paper

tries to surface the impediments to be addressed so

that the parallelization techniques may be applied to

these commercial programs. A benchmark suite

specifically designed to exhibit the computing needs

found in industry has been used. Benchmarks are

from High Performance Group of the Standard

Performance Evaluation Corporation SPEC. Parallel

and serial versions of both applications are available.

The parallel variants are hand parallelized with shared

memory directives either at the largest level of

granularity or in a hybrid manner where MPI is used

at the largest level of granularity and OpenMP

directives are used at a lower level.

In this paper the parallel variants are compared with

the automatically parallelized serial codes. Polaris

parallelizing compiler is employed which takes

language (formula based) codes and inserts OpenMP

directives around loops determined to be dependence

free. Various challenges faced by an automatic

parallelizing compiler were found when dealing with

full applications modularity, legacy optimizations

symbolic analysis, array variations and issues arising

from input output operations. The results presented in

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

this paper shall benefit parallelizing compilers with

capabilities for handling large scale science and

engineering applications

Keywords: Parallelization, Computational

Applications, Compiler Techniques

1. INTRODUCTION

Any programming language, compiler, operating

system and system architecture will ultimately have to

improve upon its functionality and performance for

applications that have commercial existence.

Commercial applications are generally voluminous in

terms of line of codes and data sets are widely used and

are usually not freely available. Most programs that are

being used to drive and evaluate the design of new

computer systems technology do not fit this definition

of commercial applications. Systems research typically

uses benchmarks that have reasonably short execution

times and are publicly available. Short runtimes are

important because, it is not unusual that in the course of

a research project a test program is run many times. If

architecture simulators are used, these programs run

two to three orders of magnitude slower than on an

ordinary computer. Public availability of test programs

is essential for all scientific research because research,

results are of small value if cannot be reproduced by

other research groups.

The long term goal of the research project described in

this paper is to advance automatic parallelization

technology for high performance computers. A test

application for such research typically includes suites

such as the SPEC CPU, Perfect, or Linpack

benchmarks. In this paper, study two programs that

come close to definition of commercial applications is

been done. Here two applications are used from the

SPEChpc benchmark suite, called SPECseis and

SPECchem. Both codes are large scale computational

applications that reflect problems faced in commercial

settings. Applications are being used that are

commercially relevant while still obtaining results that

can be reproduced and shared publicly.

SPECseis [5] was developed by ARCO beginning in

1993 to gain an accurate measure of the performance of

computing systems as it relates to the seismic

processing industry for procurement of new computing

resources. The current SPECseis is missing Kirko and

pre stack migration techniques.

Other application package, SPECchem [4] is used to

simulate molecules ab initio, at the quantum level. It is

a current research effort under the name of GAMESS at

the Gordon Research Group of Iowa State University

and is of interest to the pharmaceutical industry. Like

SPECseis, SPECchem is often used to exhibit

performance of high performance systems among the

computer vendors.

The contribution of this paper is to show program

patterns of commercially relevant HPC applications that

pose significant problems for automatic parallelization.

Both SPECseis and SPECchem are parallelized using

OpenMP. For this study, commented out the OpenMP

directives and used the manual parallelization as

standard for evaluating how well parallelizing compiler

performs. Then, reasons are analyzed that why a

parallelizing compiler could not detect the same level of

parallelism. The compiler used is the Polaris translator

[1], one of the most advanced parallelizing compilers to

date. Section 2, describes five categories of challenges

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

faced by parallelizing compilers. Sections 2.1 describe

issues arising from the fact that large applications

naturally have a very modular structure. Section 2.2

shows examples of “Endowment Accumulation” that

compilers must recognize. Section 2.3 discusses the

need for advanced symbolic analysis, Section 2.4 deals

with the issue of array variations at subroutine

boundaries; and Section 2.5 describes problems in the

presence of input output operations. Section 3

concludes the paper.

2. IMPEDIMENTS OF AUTOMATIC

PARALLELIZING COMPILERS

Using compiler tools on large-scale applications it is

found that success rate is significantly less. Here present

code examples that illustrate these challenges are

described below and discuss possible improvements to

compiler technology. The regular access patterns

representative of computational codes can be extracted

from a full application suite of codes, automatic

parallelizing compilers and parallelization techniques.

2.1. Modularity

Large-scale applications naturally have a tendency to be

structured into many modules. Modularity is a general

software engineering tool. Moreover, library modules

may be included that perform some of the desired

functionality. Full applications have deep levels of

hierarchy that include abstractions with interfaces to the

different computational routines. Modular programs

generally raise the compiler issue of inter procedural

analysis. In this work, issue has become significantly

important. To obscure this issue, it is not always known

at compile time which of the functions will be called

during a specific execution.

 Do jproc = jtop, nproc

IF (name .EQ.’DCON’)

 THEN

 IF (X . EQ . ‘A’)

 THEN

CALL

DCONA(ldim,maxtrc,otr,nra,ra,nsa,sa,abort,ipr)

 ELSE IF (x .EQ. 'B')

THEN

CALL

DCONB(ldim,maxtrc,otr,nra,ra,nsa,sa,abort,ipr)

 ELSE IF (name. EQ. ‘DGEN’)

 THEN

 ELSE IF (name.EQ. ‘DMOC’)

 THEN

 ENDDO

Figure 1. Driver Routine, SEISPROC, from SPECseis.

2.1.1. Functions of Dynamic Application

Both of applications include a large body of

functionality. Only a small part of the code is used in

any specific execution. For example SPECseis

typically runs in four “phases”, called data generation,

data stacking, depth migration and time migration.

The specific routines invoked are determined by the

input data. Because of this, compiler could not

determine at compile time what routines would be

called.

The code example in Figure 1 shows how a driver

routine is used to implement this form of dynamic

subroutine invocation in SPECseis. The variable name

is derived from input data. Accordingly, the compiler

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

cannot determine which routines are called or in

which order are called and concludes that there are

cross iteration dependencies within this region.

To triumph over the problem of not knowing which

routines will be called at compile time would require

program knowledge. With SPECseis, this would mean

that the compiler must know that the seismic routines

are only applied to the seismic traces in certain orders.

The compiler would also have to understand that the

data originates from only few locations in the code.

With this knowledge and with extensive expression

propagation an automated compiler may be able to

find parallelism encompassing a driver routine.

2.1.2. LINGUAL HURDLES

Another result of code modularity is multilingual

applications; SPECseis has a Fortran 77 main

program, which calls a C routine, to allocate memory.

The code sections in Figure 2 illustrate these

situations.

As new languages become widely used and

compilation techniques for higher level languages of

the object oriented flavor are developed to produce

efficient code and expected to see the instances where

the optimizing compiler must cross language barriers

within a single application to grow with time. To

overcome this hurdle, the compiler must perform

interprocedural analysis across languages.

Figure 2. Multi-Lingual Characteristics of SPECseis

2.1.3. Extensible Libraries

These applications make use of software libraries. One

characteristic of these library routines is that it tends to

have many options and parameters. Figure 3 shows an

example from SPECseis.

 The library routine SCOPY is used to copy one

vector into another with any stride for either of the

two vectors. Similar examples could be given from

SPECchem, such as the DDOT routine shown later in

Figure 4. DDOT is almost always called with the

strides of the two vectors (incx and incy) equal to 1.

2.2. Endowment Accumulation

SPECseis and SPECchem both use endowment code

for low level mathematical functionality. SPECseis

includes 35 IEEE library routines to perform Fast

Fourier Transformations. SPECchem includes 63

matrix routines, some of which were derived from

Linpack code of 1978. These codes tend to be

optimized for performance, but may hinder additional

compiler optimizations. For example, the DDOT

routine in SPECchem simply produces the dot product

of two vectors. The simple code for the general case is

shown on the left side of Figure 4.On the right, a form

program SEIS

open(parameter file)

call seisprop()

 S$OMP PARALLEL

call cproc()

 S$OMP PARALLEL

END
End

subroutine

seisproc(otr,ra,sa)

real otr(*),ra(*),sa(*)

do jproc=jtop,nproc

int sbfread_(,frame,volume,trc,xyz)

int sbfreadt _(,frame,volume,trc,xyz)

int sbfwrite_(,frame,volume,trc,xyz)

int sbfrdfrm_(handle,frame,buf)

int *handle, *frame;

float *buf;

{

FILE *sbf;

fseek(sbf,frame);
rlen=read(sbf->tfp,buf,sbf->tflen);

}

static float *otr,*ra,*sa;

int cproc_(lotr,lra,lsa)

int *lotr, *lra, *lsa;{

otr=(float*)malloc(*lotr*size of (float));

ra=(float*)malloc(*lra*sizeof(float));

sa=(float*)malloc(*lsa*sizeof(float));

seisproc_(otr, ra, sa);}

 main.s

seis.m

subroutine vsbf_lint(…)

ier=sbfrdfrm(handle,id3,sa

)

vsbf.x

Main.f

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

of DDOT is shown that was transformed for improved

locality of data references.

 SUBROUTINE SCOPY (n, a, inca, b, incb)

 Copy a vector with stride, BLAS version

INTEGER n, inca, incb, i, ia, ib

REAL a (*), b (*)

 If stride is negative, start from end of vector

IF (inca .LT. 0) THEN

ia = 1 + inca*(1-n)

ELSE

ia = 1

ENDIF

IF (incb .LT. 0) THEN

ib = 1 + incb*(1-n)

ELSE

ib = 1

ENDIF

Loop and copy from a to b

DO i = 1, n

b(ib) = a(ia)

ia = ia + inca

ib = ib + incb

ENDDO

RETURN

END

Figure 3. Library Subroutine SCOPY of SPECseis.

DOUBLE PRECISION FUNCTION

DDOT(n,dx,* incx,dy,incy)

DOUBLE PRECISION dx(*),dy(*)

DDOT = 0.0D+00

dtemp = 0.0D+00

ix = 1

iy = 1

IF(incx .LT. 0) ix = (-n+1)*incx + 1

IF(incy .LT. 0) iy = (-n+1)*incy + 1

DO 10 i = 1,n

dtemp = dtemp + dx(ix)*dy(iy)

ix = ix + incx

10 iy = iy + incy

DDOT = dtemp

RETURN

END

 USES UNROLLED LOOPS FOR

INCREMENTS EQUAL TO ONE.

C JACK DONGARRA, LINPACK, 3/11/78.

20 m = MOD (n,4)

IF (m .EQ. 0) GO TO 40

DO 30 i = 1,m

30 dtemp = dtemp + dx (I)*dy(I)

IF(n .LT. 4) GO TO 60

40 mp1 = m + 1

dtloc = 0.0D+00

DO 50 i = mp1, n, 4

50 dtloc = dtloc + dx(i)*dy(i) + dx(i +

1)*dy(i + 1)

+* dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i +

3)

dtemp = dtemp + dtloc

60 DDOT = dtemp

RETURN

END

Figure 4. Library Subroutine DDOT of SPECchem.

DO 310 J = 1, m, mxrows

jjmax = min(m,j+mxrows-1)

ij = j*(j-1)/2

DO 300 jj=j,jjmax

DO 200 i = 1,jj

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

ij = ij+1

h(ij)=hij

Figure 5. Including Intrinsics in the Symbolic

Language.

Compiler can find that the DO 50 loop is parallel.

However, subroutine DDOT is called within a triply-

nested loop which is also parallel. The parallelism of

the outermost loop can be recognized in the situation

of the generic DDOT code (the code on the left) but,

the compiler is unable to recognize this fact with the

transformed code.

Several problems are that hand transformations in

endowment codes may have been designed for

previous generations of high performance computer

systems. For today's machines the transformation may

no longer be beneficial or may even degrade

performance. SPECseis includes many lower level

FFT routines that date back to an IEEE Press book of

1979. These routines are optimized to perform Fourier

transforms with minimal memory requirements by

writing the output to the supplied input array. Such

accumulations introduce memory related

dependences, limiting the performance a parallelizing

compiler can obtain.

If the compiler is enabled to recognize specific

endowment accumulations then the previous

accumulations could be undone and the compiler

could perform its own. Another approach would be to

empower the compiler with the ability to handle all

the functions and complexities added by endowment

accumulations.

2.3. Symbolic Determination

Parallelizing compiler has its capability to detect data

accesses that do or do not access the same memory

location. This capability involves the analysis of array

subscript expressions. Several compilers in current

use on high performance systems can only analyze

such expressions if they are affine. Affine subscript

expressions contain linear combinations of the

iteration variables of enclosing loops. An example

from subroutine TFTRI of SPECchem shows the

propagated expression used to index an array in loop

DO 200:

 x(14+i1+lhc+(jj0*2+(-55)*j1+(11)*jj0+ 25 *j1*

2)/2+5*j1*jj0) = hij0

TFTRI deals with a triangular matrix where the

subsequent j(j-1)=2 elements of the work array are

accessed in the next iteration. Variables j, jj0, and i1 are

loop indices of a triply nested loop. The Polaris

parallelizer could propagate and analyze data

dependences in the presence of the above polynomial

expressions. Therefore, it was able to find the outermost

loop of TFTRI, DO 310, to be parallel. However, here

found no other compiler with this capability. Codes

emphasize the importance of such symbolic analysis

techniques.

n2 = 1

10 IF (n2 .GE. n .OR. n .EQ. 65536) RETURN

n2 = 2*n2

mag = mag+1

GOTO 10

END

n2 = 2**mag

DO 30 i=1,n2

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

Figure 6. Recognition of Power-of-2 Loops

In Figure 5, MIN and MAX functions require symbolic

analysis to incorporate inequality relations.

Since the size of the data (such as m) is not ensured to

be a multiple of mxrows, here need to include such

functions as MIN, MAX, MOD, FLOOR, and CEIL in

symbolic analysis.

SPECseis poses another challenge to symbolic

analysis. Since SPECseis relies heavily on fast

Fourier transforms, loops are found that access up to

the power of two greater than a dimension of the data.

The result of this is that some loops access up to n

elements of an array where n2 is 2[log2n] of the data

size, but Polaris gives up with symbolic analysis when

dealing with logarithmic and exponential expressions.

2.4. Array Variations and Type Change

Interprocedural analysis which is above described is a

very important technique for dealing with modular

programs. Subroutine inline expansions to achieve the

same effect are used by the Polaris compiler. A

problem that both of these techniques face is that

arrays may assume different shapes and have different

types in a subroutine and its caller.

2.4.1. Array Variation

The caller routine shapes the array as a D array and the

callee shapes it as 1D. No out of bounds indexing

occurs by default, this is assumed by FORTRAN

compilers. According to this assumption v(1,i) and

v(1,j) in the following example will never overlap as

long as i ≠ j. These two portions of the array v are

passed as two separate vectors into the DAXPY

subroutine, which sees the two parameters as two

single dimension arrays. An example of array

variations is given in Figure 7.

Multiple problems occur when subroutine DAXPY is

in lined into SCHMD. When Polaris inline DAXPY

into SCHMD, it linearizes the array index to the D

array and accesses v as a one dimensional array.

Then, polaris cannot determine that the access to

v(1,i) which is now v(i5+(i3-1)*ndim does not

overlap with v(1,j) which is now v(i5+(i3-

1+j1)*ndim).

 DO i5 = 1, num0, 1

 v(i5+(i3-1+j1)*ndim) = v(i5+(i3-

1+j1)*ndim) + v(i5+(i3-1)*ndim)*dum1

 ENDDO

Another example of variations in Figure 8 shows a

situation where portions of a large array declared in

the main program of SPECseis are passed into several

subroutines.

Caller Routine:

SUBROUTINE SCHMD(v,m,n,ldv)

DIMENSION v(ldv,n)

CALL DAXPY(n,dum,v(1,i),1,v(1,j),1)

Callee Routine:

SUBROUTINE DAXPY(n,da,dx,incx,dy,incy)

DIMENSION dx(*),dy(*)

DO 10 i = 1,n

dy(iy) = dy(iy) + da*dx(ix)

ix = ix + incx

 iy = iy + incy

 Figure 7. Example of Array Variations.

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

CALL SEICTRI3D

(q0(1,1,k), sa(ka), sa(kb), sa(kaa), sa(kbb),

& sa(kbnx1), sa(kbnxn), sa(kbbnx1),

sa(kbbnxn),

& sa(kbny1), sa(kbnyn), sa(kbbny1),

sa(kbbnyn),

& sa(kze), sa(kzf), nx, ny)

 Figure 8. Array Carving.

In Figure 8, Work array, sa, is passed into

SEICTRI3D. If inline SEICTRI3D into the caller

routine, then the implicit non alias assumption of

FORTRAN (the assumption that none of the

parameters to a subroutine are aliased) is lost. Only

with the non aliasing assumption of FORTRAN 77

know that the accesses to the segments of sa do not

overlap.

2.4.2. Transformations of Array Type

When the type of an array transforms between the

caller and callee subroutine then similar problem

arises. Figure 9 gives an example from SPECseis

where some arrays are declared real and used as

complex within the callee subroutines. This is because

it is a large work array where one set of routines use a

portion of the work array as a smaller real array and

another portion as a smaller complex array.

2.5. Loop Exits and IO Statements

Polaris could not determine that one of the main loops

of SPECchem (TWHEIP do#3) is parallel was

because of an abort statement. The abort statement is

executed only in rare cases but the compiler simply

sees a conditional and an exit from the loop. In this

case the abort statement was hidden deep in a nest of

subroutine calls, loop nests, and conditionals,

illustrated in Figure 10. The exits occur only in cases

of errors, cases where correct program execution is

not applicable then the compiler should ignore

program exits when searching for data dependencies.

Figure 11 gives another example of conditions that

section portions of code.

Caller Routine:

SUBROUTINE MG3D_ZSTEP(...,sa,...)

 This routine propagates wave-field 1 depth

step.

REAL sa(*)

 Extrapolate in x and y directions

CALL MG3D_XTRAP(...,sa,sa(ksa))

Callee Routine:

SUBROUTINE MG3D_XTRAP(...,vel,sa)

REAL vel(nx,ny)

COMPLEX sa(*)

Figure 9. Array Type Changing

SUBROUTINE TWHEIP

DO iit = 1, npar

IF (ijkl .EQ. 1) THEN

CALL GENRAL

 DO 480 kg = 1, ngc

 DO 460 lg = 1, lgmax

 DO 440 n = 1, nij

IF (nroots .GE. 6) CALL ROOT6P

 DO k = 3,n

CALL RYSNOD

CALL ABRT

CALL abort()

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

SUBROUTINE RYSNOD

IF (prod .GE. zero) THEN

IF (maswrk) WRITE(6,15) m, k

CALL ABRT

STOP

endif

Figure 10. Program Exit within a Loop.

 IF (kdepth .EQ. 0) THEN

 Transpose data if first time through

 CALL JSYNC()

 Stored data volume is (x, f, y), with y spread

across nodes.

 Use transpose operations to spread frequencies

across nodes.

 (x, f, y) -> (x, y, f)

CALL DTRAN132C(nx, nfp, nyp, ra, sa)

 If up to number of lines, quit

ELSE IF (kdepth .GE. nz) THEN

ntro = 0

IF (node .NE. master) return

CALL SYSOHDR('MG3D')

WRITE (ipr,9010) tload, tcomp, tcorr, tcomm,

flopsm,

* atee, ratec, flopsm/(tcomp + tcorr + tcomm)

return

endif

Figure 11. Rarely Executed Code Sections

These two conditional sections are executed only once

per program run, Polaris assumes that could be

executed each time this code section is invoked. As a

result, Polaris sees a possible call to jsync

(synchronize MPI processors), DTRAN132C

(Transpose the distributed dimension), a call to

SYSOHDR (prints out info to the screen), and a

premature return within every invocation of this code

section. The value of ntro, which is important for the

following seismic routines, is unknown at the end of

this code section. (Ntro is the number of traces out of

this seismic routine which the next seismic routine in

the pipeline will process sees the discussion on the

driver routine of SPECseis in Section 2.1.1.

2.6. Large-scale Applications Issues

It is presented that the examples and compiler issues

for which the context of large, commercially relevant

applications makes a difference. Number of problems

faced by compiler that are believed, are equally

important in smaller applications. Parallelizing

compilers are well capable of analyzing Fortran DO

loops for parallelism.

Important general issue is data dependence analysis is

needed in the presence of subscripted subscripts and

pointers. It is found that subscript arrays are often only

written during the initialization of a program or

program phase and from then on are constant.

3. CONCLUSIONS

Parallelization is not yet at the level of being fully

automatic. Using codes can be seen little success of

automatic parallelization. There are clear steps that

may be taken to empower automatic parallelizing

compilers to produce efficient parallel code. In this

paper it has been pointed out several key areas that the

compiler community should focus on to enable

automatic parallelization to become beneficial to

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 5 Issue 2 July 2015

International Manuscript ID : ISSN22308849-V5I2M89-072015

developers of large scale applications. The first aspect

of large applications is the growing amount of

modularity. The endowment libraries are another

characteristic of the codes. It is important that

compilers be able to transform optimizations within

endowment codes that no longer apply to modern

architectures.

Symbolic analysis becomes increasingly complex

with larger application codes. Additionally,

expressions contain intrinsic functions, such as

logarithms and Modular terms where symbolic

analysis and manipulation capabilities need continued

improvement. The compiler’s ability to deal with this

variety of issues is critical for successfully optimizing

large scale applications.

Input/output operations are another impediment to

successful parallelization. The compiler would have

to recognize that certain I/O statements are executed

rarely or only in error situations.

The study presented in this paper is only a small step

in the direction of understanding the characteristics of

large scale applications. Analyzing such applications

takes significant effort. Many more, similar studies

will be necessary to help the current generation of

compilers to become truly useful tools for the user of

real world commercial applications.

REFERENCES

1. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J.

HoeYinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B.

Pottenger, L. Rauchwerger, and P. Tu. Parallel

programming with Polaris IEEE Computer, 29(12):78

82, December 1996.

2. William Blume and Rudolf Eigenmann. An

Overview of Symbolic Analysis Techniques Needed

for the Effective Parallelization of the Perfect

Benchmarks. Proceedings of the International

Conference on Parallel Processing, pages II 233 II

238, August, 1994.

3. Rudolf Eigenmann, Insung Park, and Michael J.

Voss. Are parallel workstations the right target for

parallelizing compilers? In Lecture Notes in Computer

Science, No. 1239: Languages and Compilers for

Parallel Computing, pages 300 314, March 97.

4. Michael W. Schmidt et. Al. General atomic and

molecular electronic structure system. Journal of

Computational Chemistry, 14(11):1347 1363, 1993.

5. C. C. Mosher and S. Hassanzadeh. ARCO seismic

processing performance evaluation suite, user s guide.

Technical report, ARCO, Plano, TX , 1993.

