ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 ## IMPLEMENTATION OF ENERGY EFFICIENT AND SECURED PROTOCOL FOR DEPLOYMENT IN WIRELESS SENSOR NETWORKS Amit Sharma Research Scholar Punjab Technical University Jallandhar, Punjab, India Dr. S. N. Panda Director Research Chitkara University Rajpura, Punjab, India Dr. Ashu Gupta Assistant Professor Apeejay Institute of Management Technical Campus Jallandhar, Punjab, India ## **ABSTRACT** Wireless sensor networks (WSN) classically consists of a base station and number of sensor nodes. The sensor nodes are randomly distributed over the sensor network's field. The sensor nodes monitor environmental factors such as temperature, air pressure, and motion, and send those sensing data to the base station. The base station acts as a gateway to deliver information from the sensor nodes to outside users who need it. In WSN, it is too difficult to initialize the sensor nodes and manage the sensor networks due to the large number of sensor nodes, which may number tens of thousands. Therefore, self-configuring sensor nodes are desirable in WSN. Moreover, in order to save energy, sensor nodes carry out data aggregation and compression before sending data to the base station, and execute energy efficient routing. In the Existing cluster based protocol all the sensor nodes that has to communicate each other or transfer packets is possible only with the help of cluster head. The existing protocol doesn't follow any routing technique's so many sensor nodes are participating in network than needed, so there is loss power of those nodes. In this research work we analyzed that cluster based routing technique is the best energy efficient routing technique comparing to any other techniques. This approach and the paradigm is simulated in ns2 and results were compared using x graph. ## INTRODUCTION A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional, also enabling control of sensor activity. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance; today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and so on. The WSN is built of "nodes" - from a few to several hundreds or even thousands, where each node is connected to one (or sometimes several) sensors. Each such sensor network node has typically several parts: a radio transceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded form of energy harvesting. A sensor node might vary in size from that of a shoebox down to the size of a grain of dust, although functioning "motes" of genuine microscopic dimensions have yet to be created. The cost of sensor nodes is similarly variable, ranging from a few to hundreds of dollars, depending on the complexity of the individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding constraints on resources such as energy, memory, computational speed and communications bandwidth. The topology of the WSNs can vary from a simple star network to an advanced multi-hop wireless mesh network. The propagation technique between the hops of the network can be routing or flooding. #### **APPLICATIONS** ## AREA MONITORING Area monitoring is a common application of WSNs. In area monitoring, the WSN is deployed over a region where some phenomenon is to be monitored. A military example is the use of sensors detect enemy intrusion; a civilian example is the geo-fencing of gas or oil pipelines. ## ENVIRONMENTAL/EARTH MONITORING The term Environmental Sensor Networks has evolved to cover many applications of WSNs to earth science research This includes sensing volcanoes, oceans, glaciers, forests etc. ## AIR QUALITY MONITORING The degree of pollution in the air has to be measured frequently in order to safeguard people and the environment from any kind of damages due to air pollution. In dangerous surroundings, real time monitoring of harmful gases is a concerning process because the weather can change with severe consequences in an immediate manner. Fortunately, wireless sensor networks have been launched to produce specific solutions for people. ## AIR POLLUTION MONITORING Wireless sensor networks have been deployed in several cities (Stockholm, London and Brisbane) to monitor the concentration of dangerous gases for citizens. These can take advantage of the ad-hoc wireless links rather than wired installations, which also make them more mobile for testing readings in ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 different areas. There are various architectures that can be used for such applications as well as different kinds of data analysis and data mining that can be conducted. #### FOREST FIRE DETECTION A network of Sensor Nodes can be installed in a forest to detect when a fire has started. The nodes can be equipped with sensors to measure temperature, humidity and gases which are produced by fire in the trees or vegetation. The early detection is crucial for a successful action of the firefighters; thanks to Wireless Sensor Networks, the fire brigade will be able to know when a fire is started and how it is spreading. #### LANDSLIDE DETECTION A landslide detection system makes use of a wireless sensor network to detect the slight movements of soil and changes in various parameters that may occur before or during a landslide. Through the data gathered it may be possible to know the occurrence of landslides long before it actually happens. ## WATER QUALITY MONITORING Water quality monitoring involves analyzing water properties in dams, rivers, lakes & oceans, as well as underground water reserves. The use of many wireless distributed sensors enables the creation of a more accurate map of the water status, and allows the permanent deployment of monitoring stations in locations of difficult access, without the need of manual data retrieval. ## NATURAL DISASTER PREVENTION Wireless sensor networks can effectively act to prevent the consequences of natural disasters, like floods. Wireless nodes have successfully been deployed in rivers where changes of the water levels have to be monitored in real time. #### **CHARACTERISTICS** The main characteristics of a WSN include: - Power consumption constrains for nodes using batteries or energy harvesting - Ability to cope with node failures - Mobility of nodes - Communication failures - Heterogeneity of nodes - Scalability to large scale of deployment - Ability to withstand harsh environmental conditions - Ease of use Sensor nodes can be imagined as small computers, extremely basic in terms of their interfaces and their components. They usually consist of a processing unit with limited computational power and limited memory, sensors or MEMS (including specific conditioning circuitry), a communication device (usually radio transceivers or alternatively optical), and a power source usually in the form of a battery. Other possible inclusions are energy harvesting modules, secondary ASICs, and possibly secondary communication interface (e.g. RS-232 or USB). ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 The base stations are one or more components of the WSN with much more computational, energy and communication resources. They act as a gateway between sensor nodes and the end user as they typically forward data from the WSN on to a server. Other special components in routing based networks are routers, designed to compute, calculate and distribute the routing tables. #### CLUSTERING IN WSN Clustering involves grouping nodes into clusters and electing a CH. Members of a cluster can communicate with their CH directly. CH can forward the aggregated data to the central base station through other CHs. - Clustering Objectives - Allows aggregation - Limits data transmission - Facilitate the reusability of the resources - CHs and gateway nodes can form a virtual backbone for intercluster routing - Cluster structure gives the impression of a smaller and more stable network - Improve network lifetime - Reduce network traffic and the contention for the channel - Data aggregation and updates take place in CHs #### LITERATURE SURVEY - [1] They have proposed a novel Cluster Based Routing Protocol (CBRP) for prolong the sensor network lifetime. CBRP achieves a good performance in terms of lifetime by balancing the energy load among all the nodes. In this protocol first we Cluster the network by using new factors and then construct a spanning tree for sending aggregated data to the base station which can better handle the heterogeneous energy capacities. - [2] Clustering provides an effective method for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques; selecting cluster heads with more residual energy, and rotating cluster heads periodically to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spot problem in multihop sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavier relay traffic and tend to die much faster, leaving areas of the network uncovered and causing network partitions. To mitigate the hot spot problem, they've proposes an ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 Unequal Cluster-based Routing (UCR) protocol. It groups the nodes into clusters of unequal sizes. Cluster heads closer to the base station have smaller cluster sizes than those farther from the base station, thus they can preserve some energy for the intercluster data forwarding. A greedy geographic and energy-aware routing protocol is designed for the inter-cluster communication, which considers the tradeoff between the energy cost of relay paths and the residual energy of relay nodes. - [3] Hierarchical cluster-based routing (HCR) technique is an extension of the LEACH [1] protocol that is a selforganized cluster-based approach for continuous monitoring. In LEACH, the network is randomly divided into several clusters, where each cluster is managed by a cluster head (CH). The sensor nodes transmit data to their cluster heads, which transmit the aggregated data to the base station. In HCR, each cluster is managed by a set of associates and the energy efficient clusters are retained for a longer period of time; the energyefficient clusters are identified using heuristics-based approach. Moreover, in a variation of HCR, the base station determines the cluster formation. A Genetic Algorithm (GA) is used to generate energy-efficient hierarchical clusters. The base station broadcasts the GA-based clusters configuration, which is received by the sensor nodes and the network is configured accordingly. - [4] The efficient node-energy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. They've proposed a cluster based routing algorithm to extend the lifetime of the networks and to maintain a balanced energy consumption of nodes. To obtain it, we add a tiny slot in a round frame, which enables to exchange the residual energy messages between the base station (BS), cluster heads, and nodes. The slot is used in the Pre-setup phase. The performance of the proposed protocol has been examined and evaluated with the NS-2 simulator. As a result of simulation, they have confirmed that our proposed algorithm shows the better performance in terms of lifetime than LEACH. - [5] The energy consumption among nodes is more cluster-based imbalanced in wireless sensor networks. Based on this problem, in that paper, a cluster-based routing protocol for wireless sensor networks with non uniform node distribution is proposed, which includes an energy-aware clustering algorithm EADC and a cluster-based routing algorithm. EADC uses competition range to construct clusters of even sizes. At the same time, the routing algorithm increases forwarding tasks of the nodes in scarcely covered areas by forcing cluster heads to choose nodes with higher energy and fewer member nodes as their next hops, and finally, achieves load balance among cluster heads. - [6] They have presented two new routing protocols for mobile sensor networks, viz. power-controlled routing (PCR) and its enhanced version, i.e. Enhanced Power-Controlled Routing (EPCR). In both the protocols, fixed transmission power is employed in the clustering phase but when ordinary nodes are about to send their data to their respective cluster-heads, they change their transmission power ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 according to their distance from their cluster-head. While in PCR, the nodes are associated with the cluster-head on the basis of weight, in EPCR it is done on the basis of distance. In addition to the protocols, we are suggesting a packet loss recovery mechanism for the PCR and EPCR. Both protocols work well for both mobile and static networks and are designed to achieve high network lifetime, high packet delivery ratio, and high network throughput. These protocols are extensively simulated using mass mobility model, with different speeds and different number of nodes to evaluate their performance. #### **EXISTING WORK** The recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low power consumption wireless micro sensor nodes have been available. Wireless sensor networks (WSN) usually consist of a base station and many sensor nodes. The sensor nodes are randomly distributed over the sensor network's field. The sensor nodes monitor environmental factors such as temperature, air pressure, and motion, and send those sensing data to the base station. The base station acts as a gateway to deliver information from the sensor nodes to outside users who need it. In WSN, it is too difficult to initialize the sensor nodes and manage the sensor networks due to the large number of sensor nodes, which may number tens of thousands. Therefore, self-configuring sensor nodes are desirable in WSN. Moreover, in order to save energy, sensor nodes carry out data aggregation and compression before sending data to the base station, and execute energy efficient routing [1]. Sensor nodes can send their data to the base station by direct communication protocol or a multi-hop communication method such as the Minimum Transmission Energy (MTE) routing protocol. In direct communication protocol, sensor nodes, which are far from the base station, dissipate faster than others do because they send their data to the base station directly; sensor nodes do not only transmit their own sensing data, but also serve as routers for other sensor nodes if they use the MTE routing protocol. Therefore, the energy of the sensor nodes that are near to the base station is rapidly consumed in the MTE routing protocol [4]. # IMPLEMENTATION OF CLUSTER HEAD CONCEPT ## **CHOOSING CLUSTER HEAD** There are many procedures to select the cluster head based on the criteria - Battery power - Communication range - Position of the node - Total number of nodes in range - Mobility of the node ## ANNOUNCING ACCESS NODE Every node shows its identity to other nodes in that group by creating handshake message. This message reaches the node which is already registered under cluster head of some other group, that node declares itself as the Access Node (AN) and announces its presence to the node initiated the handshake message, ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 it also shares the common identifier with that node. Normal nodes, Access Node and Cluster head are belong to the one group, so each group contain these three types of nodes. ## PROPOSED SYSTEM Fig 1: Initial Position Of Nodes Fig 2: head nodes broadcasts id | Scenarios | Time (in seconds) | Packet drop (in count) | |--------------------|-------------------|------------------------| | Existing system | 9.2 | 592 | | Proposed
system | 9.2 | 259 | **Table 1: Packet Loss Comparison** ## Packet loss comparison graph Fig 3: Comparison Graph Fig 4: Comparison of packet loss Packet loss comparison table ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 ## CONCLUSION AND FUTURE SCOPE Using the proposed technique, the efficient results are obtained. As the scope of future work, the existing work can be simulated and implemented using swarm intelligence techniques. The hybrid approaches and techniques including genetic algorithm, simulated annealing, ant colony optimization and others can be used for the optimization of the route to the better extent. #### REFERENCES - [1] Novel Cluster Based Routing Protocol in Wireless Sensor Networks by Bager Zarei, Mohammad Zeynali and Vahid Majid Nezhad Department of Computer Engineering, Islamic Azad University, Shabestar Branch Tabriz, East-Azarbaijan, Iran. - [2] An unequal cluster-based routing protocol in wireless sensor networks by Guihai Chen · Chengfa Li · Mao Ye · JieWu. Department of Computer Science and Engineering, Florida Atlantic University Boca Raton, FL 33431, USA. - [3] Sajid Hussain and Abdul W. Matin Jodrey School of Computer Science, Acadia University Wolfville, Nova Scotia, Canada. - [4] An Enhanced Cluster Based Routing Algorithm for Wireless Sensor Networks by Uk-Pyo Han, Sang-Eon Park, Seung-Nam Kim, Young-Jun Chung Computer Science Department, Kangwon National University, Chunchon, Korea. - [5] A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution Jiguo Yu, Yingying Qi, Guanghui Wang, Xin Gu, School of Computer Science, Qufu Normal University, Ri-zhao, Shandong 276826, PR China. - [6] Clustering-based power-controlled routing for mobile wireless sensor networks by Atta ur Rehman Khan, Sajjad A. Madani, Khizar Hayat, Samee Ullah Khan. - [7] A. Woo and D. Culler. A Transmission Control Scheme for Media Access in Sensor Networks. In ACM MobiCom, 2001. - [8] E. Shih, Seong-Hwan Cho, N. Ickes, Rex Min, A. Sinha, A. Wang, and A. Chandrakasan. Physical layer driven protocol and algorithm design for energy-ef_cient wireless sensor networks. In ACM MobiCom, 2001. - [9] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie. Protocols for self-organization of a wireless sensor network. IEEE Wireless Communications, Oct. 2000. - [10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In ACM MobiCom, 2000. - [11] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In ACM International Workshop on Wireless Sensor Networks and Applications, 2002. - [12] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and implementation of an intentional naming system. In ACM SIGOPS Operating Systems Review, 1999. - [13] A. Woo and D. Culler. A Transmission Control Scheme for Media Access in Sensor Networks. In ACM MobiCom, 2001. - [14] A. Ephremides. Energy concerns in wireless networks. IEEE Wireless Communications, Aug. 2002. - [15] Frank Stajano. The Resurrecting Duckling . What Next? Lecture Notes in Computer Science, 2133:204.??, Sep. 2001. ISSN (Online) : 2230-8849 Volume 4 Issue 2 July 2014 International Manuscript ID: ISSN22308849-V4I2M5-072014 [16] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authentication in adhoc wireless networks. In Symposium on Network and Distributed Systems Security, 2002.