
International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

AN EFFECTIVE IMPLEMENTAION OF QUERY AND CACHE BASED

OPTIMIZATION IN DISTRIBUTED SYSTEMS

Hitu Kalra

M.Tech. Research Scholar

Shree Siddhivinayak Group of Institutions

Shahpur-Bilaspur, Distt. Yamuna Nagar, Haryana, India

Prof. Ajay Kumar

Shree Siddhivinayak Group of Institutions

Shahpur-Bilaspur, Distt. Yamuna Nagar, Haryana, India

ABSTRACT

A distributed system is a piece of software that

ensures that a collection of independent computers

that are interconnected by a computer network,

appears to its users as a single coherent system and

that cooperate in performing certain assigned tasks.

The optimization of queries in distributed systems

is a complex activity that depends on many factors.

In a certain percent it is performed by the DBMS,

but there are situations when the user applications

must contain algorithms for the query optimization.

I studied many related work and found out that

very few work addressed the problem of

considering run-time conditions in query

optimization. By analyzing both theoretically and

experimentally, I have presented the need to take

run-time conditions, including CPU utilities in the

data sources and network environment, into

account in optimization process. This research

work studies two existing approaches, namely

Sequential Processing and Parallel Processing.

However, after analyzing their pros and cons, we

found that both of them are not sufficient for

optimization of distributed queries as they do not

consider run time conditions in the optimization

process. In this work, I have presented a framework

of proposed system. The system can perform the

join query effectively through the interaction of the

system components: join query recognizer,

optimizer, and executor and metadata database. I

also have proposed a join query optimization

algorithm which predicts the best execution plan

for a join query which retrieves data from two

remote computers. My algorithm estimates and

compares the total response time of all possible

sequential plans and parallel plans. The total

response time of each execution plan is impacted

by the size of transmission data and speed of

transmission. The size of transmission is

determined by the type of join query. In the data

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

transmission test, I discovered that the total

response time of data transmission in my system

comprises of the time for querying, transferring and

inserting. The querying time is short compared to

the time for transferring and inserting, but it is

important to ensure that the size of querying data

does not exceed the system memory limitation. The

time for transferring data is significant when the

transmission speed is slow and the size of

transmission data is large. Moreover, the test

results of data transmission shows that the

transmission speed is linear and has a strong

correlation with respect to the amount of data

transmitted.

In the test of the join query performance, I proved

that the neither parallel query processing nor the

sequential query processing are the best plan in all

cases. The parallel query processing is better than

sequential query processing when the size of the

join query result is equal to or larger than the

maximum of the sizes of two source tables. The

sequential query processing is faster than parallel

query processing when size of the join query result

is relatively small compared to the source tables. In

addition, the transmission speed is a factor which

the system must consider to predict the best plan

for a join query.

Finally, I have implemented the prototype system

with the proposed architecture and optimization

algorithm. The experimental results showed the

capabilities and efficiency of join query

optimization algorithm and gave the target

environment where the algorithm performs better

than other related approaches and predict the best

plan for a join query.

Keywords – Distributed Databases, Query

Optimization, Performance of Distributed Systems

Proposed join query optimization system comprises

of seven basic components: query recognizer,

query optimizer, query executor, speed calculator,

and metadata database.

The proposed framework has following modules:

User

 A user is an agent, either a human agent (end-user)

or software agent, who uses a computer or network

service. A user often has a user account and is

identified by a username (also user name). Other

terms for username include login name, screen

name, users are also widely characterized as the

class of people that use a system without complete

technical expertise required to understand the

system fully. In projects in which the actor of the

system is another system or a software agent, it is

quite possible that there is no end-user for the

system. In this case, the end-users for the system

would be indirect end-users

Global Query Interface

 Global Query Interface is used to obtain a pointer

to another interface, given a Graphical User

Interface Database (GUID) that uniquely identifies

that interface.

Query Recognizer

Query recognizer checks if the user input query is a

valid join query. This recognizer firstly detects if

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

the input query has any syntax errors and if the

columns, tables and database in user query exist in

the distributed database. If the recognizer detects

any error in user input query, recognizer will

terminate the query execution and returns an error

message. The error detection prevents the network

and computation resources from being executing an

invalid query. Query recognizer also checks if the

user query is a valid join query or not. If the query

is not a valid join query, this query will not be

executed using the join query optimization

algorithm because it is more efficient to execute

non-join query directly.

Furthermore, the join query recognizer prepares the

information related to a join query after it detects

input query is join query. First, it determines which

type of join query the input query is. The type of

join query is used to estimate the quantity of the

result. Also the recognizer divides the query into

sub-queries and sends it to query optimizer.

Finally, the recognizer retrieves the IP addresses of

the machines, the database names and the types of

database platforms where the source tables reside.

The IP addresses and database names help the

system locate the web services and data.

Query Optimizer

Local optimizer receives the sub-query from global

optimizer, and executes the sub query in its local

database management system to determine the

number of rows, number of columns, and the total

quantity of data. Local optimizer also performs the

query which requires the distribution information

of sub-query and sends the distribution information

to global optimizer. The global Optimizer controls

the entire of join query optimization and chooses

the best execution plan.[19] The global optimizer

interacts with the local optimizers which reside on

the remote sites to retrieve the information from the

two sub-query result. Then, the global optimizer

estimates the size of the join query result based on

the type of join query and the distribution

information of the sub-query, and calculates the

estimate of the total response time for the three

possible execution plans based upon the network

speed, process speed and the time for initialization

from metadata database. Finally, the global

optimizer selects the plan that has the minimum

response time as the best execution plan.

Query Executor

Query executor performs the join query using the

execution plan chosen by the join query optimizer

and records the time spent on data transmission and

local query execution. There are three sub-

components in join query executor: the data sender,

the data receiver and the global query executor.

The data sender and data receiver lies on the

remote sites. The data sender works on the

participating remote sites and data receiver works

on the joining site. The data sender executes the

sub-query and save the information includes the

number of rows, the number of columns, the

column names, and the column data types and

transfers the resulting data to the data receiver.

The data receiver receives the data and inserts it

into the database. The data transmission between

the data sender and the data receiver is divided into

several smaller transmissions when the amount of

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

resulting data is too large. If the size of object that

holds the data exceeds the capacity of the

machine’s memory, the system will respond very

slowly or crash. Thus, the system must divide the

query into a set of sub-queries such that the

quantity of data from the sub-query fits to memory

size. Furthermore, it is more efficient to run a set of

small queries than one large query. Even if the

large size of the query result does not exceed the

memory capacity, it still consumes a significant

amount of memory. If the machine’s free memory

gets too low, the system will perform very slowly.

The global query executor interacts with the data

sender and data receiver to perform the execution

plan. The global query executor calls the data

senders on the remote sites to prepare the result,

and then instructs the data receiver on the joining

site to retrieve the data and store it. After the data

transmission completes, the global query executor

interacts with the data sender of the site where all

participating tables now reside. The data sender

executes the join query and returns the result to

global query executor. In addition, global query

executor records the response time for data

transmission join query execution, and the quantity

of data. For each transmission, the system records

the source site, destination site, quantity of

transmission data, and response time. The data are

saved into the metadata and used to update the

transmission speed and processing speed.

Speed Calculator

Speed calculator calculates the data transmission

speed between sites, the processing speed of each

machine, and the initial time for data transmission

and query execution. The speed calculator retrieves

the history execution data from metadata database,

applies the Least Squares Regression Algorithm to

fit the data, and then inserts new records or updates

the existing records in the metadata database.

Metadata Database

A metadata database is a centralized database that

stores the metadata of the entire distributed

database.[20] The metadata database stores the

information of all database systems within the

distributed database, such as the IP address of each

database, the database platforms, the database

names, the database file directories, the table

names, the Column names, the data types, and so

on. The database metadata helps the system to

locate data, access data, and test for errors. It

enhances the efficiency and effectiveness of

database collaboration. Moreover, the metadata

database records the transmission speed, processing

speed and history performance data. The global

optimizer on each site uses this data to estimate the

response time and choose an execution plan.

Proposed Work

My proposed work goes through two methods -

Sequential method and Parallel method.

First method implement this join query by sending

all the join participating tables to the each site

where data is distributed and perform the join at

that site and selects the site which perform the join

query at minimum response time. Time for this

method will equal to the addition of time to fetch

the data from participating sites, time to transfer the

data from participating site to the joining site, time

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

to insert the data into joining site and join query

processing time.

Second method will show the results by performing

the join query on the client site. The join query in

this method will directly take the data from server

sides. Time for this method will depend upon the

time to fetch the data from server sides, transferring

the data from sever sides to client side, time to

insert the data into client database and join query

execution time.

Proposed algorithm compares both the methods

based upon their performance and execute the best

one. Therefore, the join query will be optimized in

distributed database.

The Proposed Research Work is based on the

following methods -

• Sequential method and Parallel method

execution of the Queries using Join

Operations from multiple fragmented

databases as well as relations

• Cache Based Optimization of the Query

Results that is providing better and

efficient results as compared to non-cache

implementation

• The pragmatic investigation of cache

based implementation to fetch the tuples

from assorted databases distributed at

multiple locations.

• Graphical analysis of the query execution

time so that the investigation can be done

with prior implementation.

• The web based scripting as well as live

databases for the execution and testing

based on the execution time or response

time by which the proposed work can be

analyzed as well as justified.

• The proposed implementation is justified

with an empirical algorithmic approach

that is deployed on a web based platform.

• The web based platform as well as query

optimization engine shall keep track of

each query and administration panel for

analysis.

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

The experiment and simulation is performed on the

distributed databases.

A SQL join statement joins together

records from two or more tables in a database. It

makes a set that could be spared as a table or

utilized as it seems to be. A Join is a methods for

joining fields from two tables by utilizing values

normal to each. ANSI-standard SQL indicates five

sorts of Join: Inner, Left Outer, Right Outer, Full

Outer and Cross. As an exceptional case, a table

(base table, see, or joined table) can Join to itself in

a self-join.

A programmer composes a Join

proclamation to distinguish the records for joining.

Assuming that the assessed predicate is accurate,

the joined together record is then transformed in the

normal configuration, a record set or an

impermanent table.

Distributed Databases and Relations
stay at different remote locations

Cache Based Implementation of the
Query Results

Empirical Analysis of the Resultset based
on the executioan time

Cache Based Implementation providing
efficient Results regardless of the
number of records in terms of the

Execution / Response Time

Non-Cache Based Implementation of
the Query Results

Empirical Analysis of the Resultset based
on the execution time

Database 1 Database 2

Database 3 Database 4

Database 5 All Assorted Database are distributed

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

Social databases are frequently

standardized to dispense with duplication of data

when articles might have one-to-numerous

relationships. Case in point, a Department may be

connected with numerous diverse Employees.

Joining two tables viably makes an alternate table

which consolidates data from both tables. This is at

some upkeep regarding the time it takes to process

the join. While it is likewise conceivable to

essentially administer a denormalized table if speed

is imperative, copy data might consume additional

room, and include the overhead and intricacy of

upholding information uprightness if information

which is copied later changes.

An 'inward join' is a generally utilized join

operation utilized within provisions. It can just be

securely utilized as a part of a database that

implements referential uprightness or where the

join fields are ensured not to be Null. Numerous

transaction transforming social databases depend

on Atomicity, Consistency, Isolation, Durability

(Acid) benchmarks to guarantee information

trustworthiness, making inward joins a more

dependable decision. Numerous reporting social

database and information warehouses use high

volume Extract Transform, Load (Etl) group

overhauls which make referential trustworthiness

troublesome or difficult to implement, bringing

about possibly Null join fields that a Sql question

creator can't adjust and which cause internal joins

to overlook information. The decision to utilize an

internal join relies on upon the database outline and

information attributes. A left external join can

generally be substituted for an internal join when

the join field in one table may hold Null qualities.

Internal join makes another come about table by

consolidating segment values of two tables (A and

B) based upon the join-predicate. The inquiry

contrasts every column of A and every line of B to

uncover all matches of columns which fulfill the

join-predicate. The point when the join-predicate is

fulfilled, segment values for each one matched

match of columns of An and B are joined into a

consequence line. The consequence of the join

could be characterized as the result of first taking

the Cartesian item (or Cross join) of all records in

the tables (joining each record in table A with each

record in table B) and after that giving back all

records which fulfill the join predicate. Genuine

Sql executions ordinarily utilize different

methodologies, for example, hash joins or sort-

consolidate joins, since registering the Cartesian

item is extremely wasteful..

IMPLEMENTATION / SIMULATION

SCENARIO - 1

Attemp

t ID

Produc

t ID

Classical

Approach

Proposed

Approach

1 P001
1.005198001

86
0.200445890427

2 P002
1.007359027

86
0.37758398056

3 P002
1.004004955

29

0.076111078262

3

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

4 P003
1.007702112

2

0.002627849578

86

5 P003
1.473373889

92

0.046544075012

2

6 P003
1.015309095

38

0.049931049346

9

7 P001
1.100685834

88

0.030863046646

1

8 p004
1.018068075

18

0.055021047592

2

9 p004
1.084094047

55

0.050580978393

6

Empirical Comparative Analysis of the Approaches

INTERPRETATION OF THE TABLE

In this simulation scenario, we have taken the set of

queries executed on the Live Server that is having

number of distributed databases at multiple

locations. The implementation has been performed

to test and analyse the results from the Live Server

Based Deployment. The results very clearly show

that the proposed algorithmic system or approach

is providing effective as well as efficient results as

compared to the classical approach.

The Live web based implementation that is based

on MySQL Database Server having assorted

databases has been tested and simulated with PHP

Scripts and Graphical Implementation. It is found

without any specific qualm that the proposed

system approach of query optimization is efficient

to justify and prove the research work.

In the proposed as well as implemented research

work, it is apparent that the query optimization

time of the proposed algorithmic approach is rapid

and acceptable.

In the upcoming graphical representation and

analysis, we will explain the results so that the

proposed approach can be proved better than the

classical approach.

We have taken the Live Web Server response time

and generated the different types of graphs and all

graphs are proving that we are getting better

results in the proposed approach.

The upcoming graphical demonstrations shall

prove the fact that the proposed approach will

definitely be better than the traditional database

queries. As we have implemented the cache based

engine for query optimization, the algorithmic

approach is proved to be efficient to get the

resultset from the databases distributed at remote

locations. The remotely as well as distributed

databases are making use of the foreign key and

getting the results in very less time.

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

Figure 1 - Execution Time of Classical and Proposed Approach

INTERPRETATION OF THE GRAPH

The above drawn graph has been generated from

the data fetched from the database server and our

implementation performed on the data set.

It can be seen from the graph that the query

execution time in the proposed approach is far

lesser than that classical approach. The graphical

representation is quite enough to prove the

upcoming fact and conclusion that the join query

optimization along with the cache based

implementation of the engine is better as well as

enhanced from the traditional method of records

fetching from assorted distributed databases.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9

E
x

e
cu

ti
o

n
 T

im
e

 (
In

 S
e

co
n

d
s)

Query Execution Attempt

Classical Approach

Proposed Approach

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

Figure 2 - Execution Time of Classical and Proposed Approach

INTERPRETATION OF THE GRAPH

The graph above mentioned shows that that

demarcation line of the classical versus proposed

approach is having huge difference.

The graphical representation and analysis of the

figure demonstrates the fact as well as conclusion

that the cache based implemented is better as

compared to the non-caching in the databases from

distributed locations.

These distributed locations can be remote and

obviously as per the implementation will not affect

the results. The results from the proposed approach

will provide good results as we can see in the

graph.

CONCLUSION

This work implements the prototype system with

the proposed architecture and optimization

algorithm. The experimental results showed the

capabilities and efficiency of join query

optimization algorithm and gave the target

environment where the algorithm performs better

than other related approaches and predict the best

plan for a join query. For future work, I plan to

extend my study in the following directions:

• The metaheuristic based implementation can

be performed that includes ant colony

optimization, honey bee algorithm, simulated

annealing and many other others. Such

algorithmic approach should provide better

results when we move towards metaheuristics.

• Join query optimization algorithm assumes

that all the relations referenced by a query are

not fragmented but distributed in different

sites. So a natural extension is to enable the

algorithm to process a query where all

relations referenced by a query are

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9

E
x

e
cu

ti
o

n
 T

im
e

 (
In

 S
e

co
n

d
s)

Query Execution Attempt

Classical Approach

Proposed Approach

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

fragmented and replicated across multiple

sites.

• This dissertation mainly discusses distributed

join operation. Certainly we join firstly and

then perform other operations on the joined

result, but there can be other brilliant way to

schedule all operations efficiently in

distributed environments.

• We may also plan to extend this algorithm for

the processing of heterogeneous database

systems.

� Another possible extension is to research the

methods of inserting data. Inserting data into

 the database is a significant component of the

time to perform the distributed join.

REFERENCES

[1] Swati Gupta, Kuntal Saroba, Bhawna,

“Fundamental Research of Distributed

Database”, International Journal of

Computer Science and Management

Studies, pp. 138-146, 2011

[2] Fan Yuanyuan, Mi Xifeng, “Distributed

Database System Query Optimization

Algorithm Research”, IEEE international

conference on Computer Science and

Information Technology (ICECT), pp.145-

149, 2011

[3] Neera Batra, A. K. Kapil, “Three Tier

Cache Based Query Optimization Model

in Distributed Database”, IJEST, vol. 2,

2010, pp. 3206-3212

[4] Reza Ghaemi, Amin Milani Fard, Hamid

Tabatabee, Mahdi Sadaghizadeh,

“Evolutionary Query optimization for

Heterogeneous Distributed Database

Systems” ,World Academy of Science,

Engineering and Technology, pp. 43-49,

2008

[5] S. Upadhyaya and S. Lata, "Task

Allocation in Distributed Computing VS

Distributed Database Systems: A

Comparative Study", IJCNS (International

Journal of Computer Science and Network

Security),vol. 8:3, pp. 338-346, 2008.

[6] Țambulea L., Horvat-Petrescu M.,

“Redistributing Fragments into a

Distributed Database, International

Journal of Computers Communications &

Control”, ISSN 1841-9836, 3(4):384-394,

2008.

[7] Stocker, Kossman, Braumandl, Kemper,

“Integrating Semi Join Reducers into state

of the art query processors”, ICDE, pp.

143-156 , 2001

[8] J. Callan, “Distributed Information

Retrieval ” , W. B. Croft, Ed. Kluwer

Academic Publishers, pp. 127-150, 2000

[9] D. Kossman, “The state of the art in

distributed query processing” , ACM

Computing Surveys, pp. 422-469, 1998

[10] P. Griffiths, Selinger, M. M. Astrahan,

D. D. Chamberlin, R.A. Lorie, T. G. Price,

“Access path selection in a rational

database management system”, Morgan

Kauffman series in Data Management

Systems, pp. 141-152, 1998

[11] Yannis. E. Loannidis and Youngkyung

Cha Kang, “Randomized Algorithms for

optimizing large Join Queries”, ACM

Computing Surveys, pp. 47-53, 1990

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 4 Issue 2 July 2014

International Manuscript ID : ISSN22308849-V4I2M15-072014

[12] Chin-Wan Chung, “An Optimization of

Queries in Distributed Database Systems”,

Journal of Parallel and Distributed

Computing 3, pp. 137-157, 1986

[13] Philip A Bernstein and Nathan

Goodman, Engene Wong, Christopher L.

Reeve and James B. Rothnie, “Query

Processing in a System for Distributed

Databases(SDD – 1), ACM Transactions

on Database Systems, vol. 6, no. 4, 1981,

pp. 602-625

[14] Li, Vector O. K. , “Query Processing in

distributed databases” , MIT. Lab. For

Information and Decision Systems, pp.

1107, 1981

[15] Huang, Kuan – Tsae, Davenport, Wilbur

B., “Query Processing in Distributed

Heterogeneous Systems”, MIT Laboratory

for information and Decision Systems, pp.

45-49 , 1981

[16] B.M. Monjurul Alom, Frans Henskens

and Michael Hannaford, “Query

Processing and Optimization in

Distributed Database Systems”, IJCSNS

International Journal of Computer Science

and Network Security, vol.9 no.9, 2009,

pp. 143-152

[17] Syam Menon, “Allocating fragments in

distributed Database”, IEEE Transactions

on Parallel and Distributed Systems, pp.

577-585, 2005

[18] D. Kossmann, K. Stocker, “Iterative

Dynamic Programming: A New Class of

Query optimization Algorithms”, ACM

Computing Surveys, pp. 422-469, 2000

[19] Lee Chiang, Chi-sheng shin, Yaw-huei

chen, “Optimizing large join queries using

a graph based approach”, IEEE

Transactions on Knowledge and Data

Engineering, pp. 441-450, 2006

[20] Tsai, P.S.M, Chen A.L.P, “Optimizing

queries with foreign function in a

distributed environment”, IEEE

Transactions on Knowledge and Data

Engineering, pp.809-824, 2002

[21] Sukheja Deepak Singh Umesh Kumar

(July 2011), “A Novel Approach of Query

Optimization for Distributed Database

Systems”, IJCSI International Journal of

Computer Science Issues, Vol. 8, Issue 4,

No 1.

[22] Pawandeep Kaur, Jaspreet Kaur Sahiwal,

“Join Query Optimization in Distributed

Database”, International Journal of

Scientific and Research Publications, Vol.

3, Issue 5, May 2013.

[23] Nicoleta Iacob, “Distributed Query

Optimization”, PhD Student, University of

Piteşti, Issue 4/2010.

[24] Jyoti Mor, Indu Kashyap, R. K. Rathy,

“Analysis of Query Optimization

Techniques in Databases”, International

Journal of Computer Applications (0975-

888), Vol. 47 - No. 15, June 2012.

