International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

EVALUATING THE IMPACT OF DIFFERENT TYPES OF
INHERITANCE ON THE OBJECT ORIENTED SOFTWARE
METRICS

Arti Chhikara
Maharaja Agrasen College, Delhi, India.

R.S.Chhillar
Deptt. Of Computer Sc. And Applications, Rohtak, India.

Sujata Khatri
Deen Dyal Upadhyaya College, Delhi, India

Abstract: Object Oriented Metrics plays a pivotal role in the development of fault free software
product. Object Oriented Metrics are mainly designed for Object Oriented Systems which are based
on the principles of Localization, Abstraction, Encapsulation, Information Hiding and Inheritance.
This research paper focuses on effects of inheritance on object oriented metrics. A Softwar e company
schema is taken and different designs are made showing different level of inheritance. Chidamber &
Kemerer metric suit is calculated for each design and the results are evaluated.

Keywords: Inheritance, metrics, Object Oriented Systemafe Product.

1. Introduction

Software metrics are essential to software engingeior measuring software complexity and quality,
estimating cost and project effort to simply namfewa. The traditional metrics like function poispftware
science and cyclomatic complexity have been wedldus the procedural paradigm. However, they do not
readily apply to aspects of the OO paradigm [10, 11

It is important to distinguish between the desigingples of object oriented approach and the desig
principles of functional oriented approach, in artteclarify many aspects of the object orientataml allow
better quality and administration management [B, 5, 11].

Pressman [7] points at five situations, where thjeat oriented metrics can be configured.

» Localization: It relates to the tendency of infotioa in being centralized.

» Encapsulation: Encapsulation means that objeclsdecheir data and attributes.

» Information Hiding: Information hiding means to hide object weristics (data
and attributes).

» Inheritance: This property allows the possibilifyderiving a new class and giving it the attributes
of a class or more (partially or as a whole).

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

» Object Abstraction Technique: This technique alldhe designer to concentrate only on the basic
and necessary details of certain parts of aogr

The OO technology forces the growth of OO softwasgrics [8]. Several such metrics have been prapose
The metrics suite proposed by Chidamber and Kenieiare of the best-known OO metrics. Chidamber and
Kemerer (1994) introduced a CK metrics suite wtdghsists of:

> Weight Methods per Class (WMC),

> Depth of Inheritance Tree (DIT),

> Number of Children (NOC),
> Coupling Between Object classes (CBO),

> Response For a Class (RFC) and

» Lack of Cohesion in Methods (LCOM)

In this research paper, | have evaluated the impédifferent types of inheritance: single, hietdoal,
Multilevel on the values of object oriented metrasd how this affects the design of a software pcadA
software company schema is considered and itsréiffedesigns are made without using inheritanceveitid
using different types of inheritance. The designs eonverted into java language code. All the diject
oriented metrics of CK metric suit is calculated éach design and the results are evaluated.

The rest of the paper is organized as follows.i8e@& presents the brief overview of the inheriaaad object
oriented metrics. Section 3 presents the diffedesigns of Employee database Schema .Section énpsethe
results based on collected data. Section 5 predemtiiscussion and Section 6 presents the condusi

2. Inheritance and Object Oriented Metrics:

One of the important characteristic of the OO systs inheritance. Inheritance is the ability of arlass to
acquire the properties of another class. The hdsi behind inheritance was reusability of codeviie do not
have to write the same code again and again. Obedavior (method) is defined in a super clasg,libhavior
is automatically inherited by all subclasses. Thymy write a method only once and it can be usedilby
subclasses. Once a set of properties (fields) efiaat! in a super class, the same set of propeateiherited
by all subclasses. A class and its children shamenton set of properties. A subclass only heedstdement
the differences between itself and the parent ltdrere is a key feature of the OO paradigm. Thishmaism
supports the class hierarchy design and captue$SHA relationship between a super class anduibglass.
Class design is central to the development of OGtesys. Because class design deals with functional
requirements of the system, it is the highest fiyian OOD (Object-Oriented Design). The use ofaritance is
claimed to reduce the amount of software maintemaiecessary and ease the burden of testing [3,18] &nd
the reuse of software through inheritance is cldinmeproduce more maintainable, understandablereliable
software [3].

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

Because inheritance is an important characterigtimany Object Oriented Systems, many Object Oeiknt
metrics focus on it. The inheritance metrics gigegnformation about the inheritance tree of thaesys Metrics
such as Depth of Inheritance, Number of childremmier of parentlass hierarchy nesting levelre based on it.

3. Different Designs using Different levels of Inheritance:

testingstrategy

Design 1: Design 2:
Employee
Employee Firstname
Lastname
Firstname EID
Lastname Age
EID Sex
Age Address
Sex Salary
Address
Hours Employee
Rate setFirstName
Cost getFirstName
Salary setLastName
Projname getLastName
Rmname setld
No_of testcases getld
Techname setSalary
Domainname getSalary
Deppno
Deppname |
Empstatus TechnicalEmployee
NonTechnicalEmployee
Pname
Employee Rmr;]ame gzg?noame
: Techname
setFirstName Domainname Empstatus
getFirstName Hours Deptthead
setLastName Rate
getLastName Cost NonTechnicalEmployee
setld securiyimgmt
getld TechnicalEmployee trainingmgmt
setHours setHours maintenance
getHours getHours budgetmgmt
setRate setRate
getRate getRate
domaininfo domaininfo
department costing
setSalary billing
getSalary timesheets
costing performance
billing expense
timesheets logicdesign
performance physicaldesign
expense conceptualdesign
security testing
teaminfo

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

Design 3:

Firstname
Lastname
EID

Age

Sex
Address
Salary

Employee
setFirstName
getFirstName
SetLastName
getLastName
setld

getld

Employee

TechnicalEmployee
Pname

Rmname
Cost

TechnicalEmployee

NonTechnicalEmployee

Depno

Deptname
Empstatus
Deptthead

NonTechnicalEmployee

sethours securiyimgmt

gethours trainingmgmt

setrate maintenance

getrate budgetmgmt
transportation

Engineer Consultant

Techname Domainname

Hours

Rate Consultant

Cost domaininfo

functionaltesting

Engineer teaminfo

costing

billing

timesheet

performance

expense

logicdesign

physicaldesign

conceptualdesign

testing

teaminfo

testingstrategy

Design 4.

EID
Age
Sex

setld
getld

Employee
Firstname
Lastname

Address
Salary

Employee
setFirstName
getFirstName
setLastName
getLastName

TechnicalEmployee NonTechnicalEmployee
Pname Depno
Rmname Deptname
Cost Empstatus
Deptthead
TechnicalEmployee
sethours NonT_et;hnicaIEmponee
gethours securiyimgmt
trainingmgmt
settraie maintenance
getrate budgetmgmt
transportation
|
[|
Engineer Consultant
Hours Domainname
Rate
Cost Consultant
domaininfo
Engineer functionaltesting
billing
Developer Designer Tester
Techname e
Specification No_of testcases
timesheet logicdesign testing
performance physicaldesign teaminfo
expense conceptualdesig testingstrategy

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

4. Results Obtained after evaluating the designs:

Design 1:

Class Name WMC DIT RFC NOC CBO LCOM
Employee 24 0 24 0 0 230
Employee class is too large. It should be deconthose

Design 2:

Class Nam WMC DIT RFC NOC CBC LCOM
Employee 9 0 9 2 0 2
TechnicalEmploye 17 1 18 0 0 13C
NonTechnicalEmployee 6 1 7 0 0 0
TechnicalEmployee class is too large. It shouldésomposed.

Design 3:

Class Nam WMC DIT RFC NOC CBC LCOM
Employet 9 0 9 2 0 2
TechnicalEmployee 5 1 6 2 0 0
Enginee 12 2 13 0 0 1C
Consultant 4 2 5 0 0 0
NonTechnicalEmploye | 6 1 7 0 0 1
Engineer class is too large. It should be deconghose

Design 4:

Class Nam WMC DIT RFC NOC CBC LCOM
Employee 9 0 9 2 0 2
TechnicalEmploye 5 1 6 2 0 0
Engineer 3 2 4 3 0 0
Develope 3 3 4 0 0 0
Designer 3 3 4 0 0 0
Tester 3 3 4 0 0 0
Consitltant 4 2 5 0 0 0
NonTechnicalEmployee 6 1 7 0 0 1

5. Resultsand Analysis:

When the four designs are evaluated and CK medtiitds calculated for each design,

observed.

followingrisiare

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

1. Designl is considered as a poor design becauseolesptlass is too large. There are large number of
variables and methods in Employee class. The vldughe metric WMC is high. As a result the
functional complexity of the design is high andd@ntains too much information and also the value of
LCOM metric is too high means methods are less sighe One solution to this problem is to
decompose the class into several subclasses. Itlwmake the design simpler and more understandable.

2. Design2 is better than Designl but it suffers fimany problems. TechnicalEmployee class is stilyver
large. The value of LCOM metric for this class isryw high. As a result this class needs to be
decomposed. Simplying the class would make it tesaplex. However to increase the quality, more
decomposition is required and inheritance shoulddesl.

3. When Design3 is evaluated, it scored higher markaaspared to the previous designs. Almost all the
factors are within the range but still there idass Engineer with slightly high LCOM value. Thene,
this class needs to be further decomposed sottleanibe more simplified and inheritance should be
used more.

4. Design4 is considered appropriate. All its factams within the range.

6. Conclusion:

This paper assesses the effect of inheritanceenlifect oriented metrics. Assessment shows thatitance is a
key factor of object oriented systems. When noitéuece is used in designing a software produet,vdlues of
object oriented metrics are not within the range @ resulting design is complex and tedious. dltfh locating
the information in one class reduces the depthnbéiitance and the number of children, it would boer,

increase the class size and program complexity.iieeritance is introduced, all the factors ofealbjoriented
metrics are within the range and the design noy tmeelcomes simpler and understandable but the guafit
software product improves a lot.

Refer ences:

[1]Sami Méakelda and Ville Leppéanen.”’Observation omck of Cohesion Metrics”. Proceedings of the
International Conference on Computer Systems actifiddogies - CompSysTech'06.

[2]Dr. M.P.Thapaliyal and Garima Verma.”Softwddefects and Object Oriented Metrics” - An Empirical
Analysis. International Journal of Computer Applicas 9(5):41-44, November 2010.

[3]Chidamber, S. and Kemerer, C.” A Metrics Suite ®bject Oriented Design”, IEEE Transactions oftvsare
Engineering, vol. 20, no. 6, pp. 476-493,1994.

[4]Chidamber, S., Darcy, D., Kemerer, C.” Manadeuie of Metrics for Object Oriented Software”: an
Exploratory Analysis, IEEE Transaction on Softwkregineering, vol. 24, no. 8, pp. 629-639,1998.

[5]Conte, S., Dunsmore, H., Shen, V. “Software Begring Metrics and Models”, The Benjamin/Cummings
Publishing Company, California, USA,1986

[6] Lionel C. Briand, John W. Daly, and Jirgen Wist:UAified Framework for Coupling Measurement in Qibje
Oriented Systems”. Fraunhofer Institute for Expenital Software Engineering. Kaiserslautern, Germaage.

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849
http://www.ijecbs.com

Volume 1 Issue 2 July 2011

[7]Pressman R.” Software Engineering: a PractéitsmApproach”: European Adaptation, 5th editiorQviaw-
Hill, UK, 2000.

[8] Booch.G,” Object-Oriented Design and ApplicatipBenjamin/Cummings, Mento Park, CA, 1991.

[9] Dale and H. Van Der Zee, "Software Producyiwetrics -- Who Needs Them” Eurometrics '92 Pradegs,
pp. 31 — 43, April 1992.

[10] N. Fenton, "Software Measurement. A Necess8uientific Basis,” IEEE Transactions on Software
Engineering, Vol. 20, No. 3, pp. 199 — 206, Ma2€06.

[11] R. Fichman and C. Kermerer, "Object-Orientaad Conventional Analysis and Design Methodologies:
Comparison and Critique," IEEE Computer, Vol. 2%, M0, pp. 20 — 39, October 1992.

