
International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

EVALUATING THE IMPACT OF DIFFERENT TYPES OF
INHERITANCE ON THE OBJECT ORIENTED SOFTWARE

METRICS

Arti Chhikara
Maharaja Agrasen College, Delhi, India.

 R.S.Chhillar

Deptt. Of Computer Sc. And Applications, Rohtak, India.

 Sujata Khatri
Deen Dyal Upadhyaya College, Delhi, India

Abstract: Object Oriented Metrics plays a pivotal role in the development of fault free software
product. Object Oriented Metrics are mainly designed for Object Oriented Systems which are based
on the principles of Localization, Abstraction, Encapsulation, Information Hiding and Inheritance.
This research paper focuses on effects of inheritance on object oriented metrics. A Software company
schema is taken and different designs are made showing different level of inheritance. Chidamber &
Kemerer metric suit is calculated for each design and the results are evaluated.

Keywords: Inheritance, metrics, Object Oriented System, Software Product.

1. Introduction

Software metrics are essential to software engineering for measuring software complexity and quality,
estimating cost and project effort to simply name a few. The traditional metrics like function point, software
science and cyclomatic complexity have been well used in the procedural paradigm. However, they do not
readily apply to aspects of the OO paradigm [10, 11].

It is important to distinguish between the design principles of object oriented approach and the design
principles of functional oriented approach, in order to clarify many aspects of the object orientation and allow
better quality and administration management [1, 2, 3, 5, 11].
Pressman [7] points at five situations, where the object oriented metrics can be configured.

� Localization: It relates to the tendency of information in being centralized.

� Encapsulation: Encapsulation means that objects include their data and attributes.

� Information Hiding: Information hiding means to hide object characteristics (data

and attributes).

� Inheritance: This property allows the possibility of deriving a new class and giving it the attributes

of a class or more (partially or as a whole).

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

� Object Abstraction Technique: This technique allows the designer to concentrate only on the basic

and necessary details of certain parts of program.

The OO technology forces the growth of OO software metrics [8]. Several such metrics have been proposed.
The metrics suite proposed by Chidamber and Kemerer is one of the best-known OO metrics. Chidamber and
Kemerer (1994) introduced a CK metrics suite which consists of:

� Weight Methods per Class (WMC),

� Depth of Inheritance Tree (DIT),

� Number of Children (NOC),

� Coupling Between Object classes (CBO),

� Response For a Class (RFC) and

� Lack of Cohesion in Methods (LCOM)

In this research paper, I have evaluated the impact of different types of inheritance: single, hierarchical,
Multilevel on the values of object oriented metrics and how this affects the design of a software product. A
software company schema is considered and its different designs are made without using inheritance and with
using different types of inheritance. The designs are converted into java language code. All the six object
oriented metrics of CK metric suit is calculated for each design and the results are evaluated.

The rest of the paper is organized as follows. Section 2 presents the brief overview of the inheritance and object
oriented metrics. Section 3 presents the different designs of Employee database Schema .Section 4 presents the
results based on collected data. Section 5 presents the discussion and Section 6 presents the conclusion.

2. Inheritance and Object Oriented Metrics:

One of the important characteristic of the OO system is inheritance. Inheritance is the ability of one class to
acquire the properties of another class. The basic idea behind inheritance was reusability of code i.e. we do not
have to write the same code again and again. Once a behavior (method) is defined in a super class, that behavior
is automatically inherited by all subclasses. Thus, you write a method only once and it can be used by all
subclasses. Once a set of properties (fields) are defined in a super class, the same set of properties are inherited
by all subclasses. A class and its children share common set of properties. A subclass only needs to implement
the differences between itself and the parent Inheritance is a key feature of the OO paradigm. This mechanism
supports the class hierarchy design and captures the IS-A relationship between a super class and its subclass.
Class design is central to the development of OO systems. Because class design deals with functional
requirements of the system, it is the highest priority in OOD (Object-Oriented Design). The use of inheritance is
claimed to reduce the amount of software maintenance necessary and ease the burden of testing [3, 8, 9, 10] and
the reuse of software through inheritance is claimed to produce more maintainable, understandable and reliable
software [3].

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

Because inheritance is an important characteristic in many Object Oriented Systems, many Object Oriented
metrics focus on it. The inheritance metrics give us information about the inheritance tree of the system. Metrics
such as Depth of Inheritance, Number of children, Number of parents, Class hierarchy nesting level are based on it.

3. Different Designs using Different levels of Inheritance:

Design 1: Design 2:

Employee

Firstname

Lastname

EID

Age

Sex

Address

Salary

Employee

setFirstName

getFirstName

setLastName

getLastName

setId

getId

setSalary

getSalary

TechnicalEmployee

Pname
Rmname
Techname
Domainname
Hours
Rate
Cost

TechnicalEmployee
setHours

getHours

setRate

getRate

domaininfo

costing

billing

timesheets

performance

expense

logicdesign

physicaldesign

conceptualdesign

testing

teaminfo
testingstrategy

NonTechnicalEmployee

Depno
Deptname
Empstatus
Deptthead

NonTechnicalEmployee
securiyimgmt
trainingmgmt
maintenance
budgetmgmt

Employee

Firstname

Lastname

EID

Age

Sex

Address

Hours

Rate

Cost

Salary

Projname

Rmname

No_of_testcases

Techname

Domainname

Deppno

Deppname

Empstatus

Employee

setFirstName

getFirstName

setLastName

getLastName

setId

getId

setHours

getHours

setRate

getRate

domaininfo

department

setSalary

getSalary

costing

billing

timesheets

performance

expense

security

trainingmgmt

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

Design 3:
Design 4:

 Employee

Firstname

Lastname

EID

Age

Sex

Address

Salary

Employee

setFirstName

getFirstName

SetLastName

getLastName

setId

getId

TechnicalEmployee

Pname
Rmname
Cost

TechnicalEmployee
sethours
gethours
setrate
getrate

NonTechnicalEmployee

Depno
Deptname
Empstatus
Deptthead

NonTechnicalEmployee
securiyimgmt
trainingmgmt
maintenance
budgetmgmt
transportation

Engineer

Techname
Hours
Rate
Cost

Engineer
costing
billing
timesheet
performance
expense
logicdesign
physicaldesign
conceptualdesign
testing
teaminfo
testingstrategy

Consultant

Domainname

Consultant
domaininfo
functionaltesting
teaminfo

Employee

Firstname

Lastname

EID

Age

Sex

Address

Salary

Employee

setFirstName

getFirstName

setLastName

getLastName

setId

getId

TechnicalEmployee

Pname
Rmname
Cost

TechnicalEmployee
sethours
gethours
setrate
getrate

NonTechnicalEmployee

Depno
Deptname
Empstatus
Deptthead

NonTechnicalEmployee
securiyimgmt
trainingmgmt
maintenance
budgetmgmt
transportation

Engineer

Hours
Rate
Cost

Engineer
costing
billing

Developer

Techname

timesheet
performance
expense

Designer

Specification

logicdesign
physicaldesign

conceptualdesig

n

Tester

No_of_testcases

testing

teaminfo
testingstrategy

Consultant

Domainname

Consultant
domaininfo
functionaltesting
teaminfo

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

4. Results Obtained after evaluating the designs:

Design 1:

Class Name WMC DIT RFC NOC CBO LCOM

Employee 24 0 24 0 0 230

Employee class is too large. It should be decomposed.

Design 2:

Class Name WMC DIT RFC NOC CBO LCOM
Employee 9 0 9 2 0 2
TechnicalEmployee 17 1 18 0 0 130
NonTechnicalEmployee 6 1 7 0 0 0

TechnicalEmployee class is too large. It should be decomposed.

Design 3:

Class Name WMC DIT RFC NOC CBO LCOM
Employee 9 0 9 2 0 2
TechnicalEmployee 5 1 6 2 0 0
Engineer 12 2 13 0 0 10
Consultant 4 2 5 0 0 0
NonTechnicalEmployee 6 1 7 0 0 1

Engineer class is too large. It should be decomposed.

Design 4:

Class Name WMC DIT RFC NOC CBO LCOM
Employee 9 0 9 2 0 2
TechnicalEmployee 5 1 6 2 0 0
Engineer 3 2 4 3 0 0
Developer 3 3 4 0 0 0
Designer 3 3 4 0 0 0
Tester 3 3 4 0 0 0
Consultant 4 2 5 0 0 0
NonTechnicalEmployee 6 1 7 0 0 1

5. Results and Analysis:

When the four designs are evaluated and CK metrics suit is calculated for each design, following points are
observed.

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

1. Design1 is considered as a poor design because Employee class is too large. There are large number of
variables and methods in Employee class. The value for the metric WMC is high. As a result the
functional complexity of the design is high and it contains too much information and also the value of
LCOM metric is too high means methods are less cohesive. One solution to this problem is to
decompose the class into several subclasses. It would make the design simpler and more understandable.

2. Design2 is better than Design1 but it suffers from many problems. TechnicalEmployee class is still very
large. The value of LCOM metric for this class is very high. As a result this class needs to be
decomposed. Simplying the class would make it less complex. However to increase the quality, more
decomposition is required and inheritance should be used.

3. When Design3 is evaluated, it scored higher mark as compared to the previous designs. Almost all the
factors are within the range but still there is a class Engineer with slightly high LCOM value. Therefore,
this class needs to be further decomposed so that it can be more simplified and inheritance should be
used more.

4. Design4 is considered appropriate. All its factors are within the range.

 6. Conclusion:

This paper assesses the effect of inheritance on the object oriented metrics. Assessment shows that inheritance is a
key factor of object oriented systems. When no inheritance is used in designing a software product, the values of
object oriented metrics are not within the range and the resulting design is complex and tedious. Although locating
the information in one class reduces the depth of inheritance and the number of children, it would however,
increase the class size and program complexity. When inheritance is introduced, all the factors of object oriented
metrics are within the range and the design not only becomes simpler and understandable but the quality of
software product improves a lot.

References:

[1]Sami Mäkelä and Ville Leppänen.”Observation on Lack of Cohesion Metrics”. Proceedings of the
International Conference on Computer Systems and Technologies - CompSysTech’06.

[2]Dr. M.P.Thapaliyal and Garima Verma.”Software Defects and Object Oriented Metrics” - An Empirical
Analysis. International Journal of Computer Applications 9(5):41–44, November 2010.

[3]Chidamber, S. and Kemerer, C.” A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476-493,1994.

[4]Chidamber, S., Darcy, D., Kemerer, C.” Managerial use of Metrics for Object Oriented Software”: an
Exploratory Analysis, IEEE Transaction on Software Engineering, vol. 24, no. 8, pp. 629-639,1998.

[5]Conte, S., Dunsmore, H., Shen, V. “Software Engineering Metrics and Models”, The Benjamin/Cummings
Publishing Company, California, USA,1986

[6] Lionel C. Briand, John W. Daly, and Jürgen Wüst: “A Unified Framework for Coupling Measurement in Object-
Oriented Systems”. Fraunhofer Institute for Experimental Software Engineering. Kaiserslautern, Germany, 1996.

International Journal of Enterprise Computing and Business Systems
ISSN (Online) : 223-8849

http://www.ijecbs.com

Volume 1 Issue 2 July 2011

 [7]Pressman R.” Software Engineering: a Practitioner's Approach”: European Adaptation, 5th edition, McGraw-
Hill, UK, 2000.

[8] Booch.G,” Object-Oriented Design and Application”, Benjamin/Cummings, Mento Park, CA, 1991.

 [9] Dale and H. Van Der Zee, "Software Productivity Metrics -- Who Needs Them” Eurometrics '92 Proceedings,
pp. 31 – 43, April 1992.

[10] N. Fenton, "Software Measurement: A Necessary Scientific Basis," IEEE Transactions on Software
Engineering, Vol. 20, No. 3, pp. 199 – 206, March 2006.

 [11] R. Fichman and C. Kermerer, "Object-Oriented and Conventional Analysis and Design Methodologies:
Comparison and Critique," IEEE Computer, Vol. 25, No. 10, pp. 20 – 39, October 1992.

