
International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

A STUDY PAPER ON ANDROID UI

Prof. Rajkumar A. Soni,

Asst. Professor,

MCA Department,

L. C. Institute of Technology, Bhandu,

Gujarat, India

Abstract

Android is an integrated open platform for mobile devices provided by Google Inc. It includes operating

system, middleware and some key applications. It has also an excellent development and debugging

environment. The main objective of this study is to explore how to design the user interfaces of handheld

device based on Android. This paper focuses on the basic layout architecture for the user interface in an

activity contained in an android application. Android provides a straightforward XML vocabulary that

corresponds to the View classes and subclasses, such as those for widgets and layouts. An android

application can also create View and ViewGroup objects programmatically.

Keywords: Android, Handheld Device, Layout, User Interfaces, Widget.

1. Introduction

As and when time elapses, the generation is moving towards hand-held devices. As they are becoming

increasingly powerful and diverse, the developers and designers gain the attention of the users by

providing an attractive user interface with significant characteristics. Currently, users not only expect that

handheld device has strong applications, but also a friendly user interface. Products which possess good

UI design will achieve better user’s demand and more profits. Thus this paper is aimed at exploring the

designing of the user interfaces of handheld device based on Android platform. This paper discusses the

design procedure through the coding method and also by using an XML. Design of user interface of

handheld device is implemented on the basis of the requirement of an application. It covers the basic

elements that make up a screen, how to define a screen in XML and load it in the code, and various

other tasks users need to handle for user interface.

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

2. UI Architecture

This hierarchy tree can be as simple or complex as you need it to be, and you can build it up using

Android's set of predefined widgets and layouts, or with custom Views that you create yourself. As

depicted in the figure 1.if we want to co-relate the hierarchy then we can see it from the base class as

android.view.View. This class represents the basic building block for user interface components. A View

occupies a rectangular area on the screen and is responsible for drawing and event handling. View is the

base class for widgets, which are used to create interactive UI components (buttons, text fields, etc.).

Fig 1. UI-Architecture

The ViewGroup subclass is the base class for layouts, which are invisible containers that hold other

Views (or other ViewGroups) and define their layout properties. The view group is the base class for

layouts and views containers.

Fig 2. Class Hierarchy in context of UI-Architecture

We are having android.Widget.FrameLayout as the last in hierarchy which is designed to block out an

area on the screen to display a single item. Generally, FrameLayout should be used to hold a single child

view, because it can be difficult to organize child views in a way that's scalable to different screen sizes

without the children overlapping each other. You can, however, add multiple children to a FrameLayout

and control their position within the FrameLayout by assigning gravity to each child, using the

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

android:layout_gravity attribute. Child views are drawn in a stack, with the most recently added child on

top. The size of the FrameLayout is the size of its largest child (plus padding), visible or not (if the

FrameLayout's parent permits). In order to attach the view hierarchy tree to the screen for rendering,

your Activity must call the setContentView() method and pass a reference to the root node object. The

Android system receives this reference and uses it to invalidate, measure, and draw the tree. The root

node of the hierarchy requests that its child nodes draw themselves — in turn, each view group node is

responsible for calling upon each of its own child views to draw them selves. The children may request a

size and location within the parent, but the parent object has the final decision on where how big each

child can be. Android parses the elements of your layout in-order (from the top of the hierarchy tree),

instantiating the Views and adding them to their parent(s). Because these are drawn in-order, if there are

elements that overlap positions, the last one to be drawn will lie on top of others previously drawn to that

space.

3. Understanding UI

In this section, we will talk about the various elements that make up the UI of an Android application. We

will discuss the various layouts available in Android to position the various widgets on the screen.

3.1 Android Screen UI Components

An Activity displays the user interface of an android application, which may contain widgets like Button,

TextView, EditText, etc. Typically, you define your UI using an XML file (for example, the main.xml file

located in the res/layout folder), which may look like this:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

>

<TextView

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello”

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

/>

</LinearLayout>

During runtime, we load the XML UI in the onCreate() event handler in our Activity class, using the

setContentView() method of the Activity class:

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

During compilation time, each element in the XML file is compiled into its equivalent Android GUI class,

with attributes represented by methods. The Android system then creates the UI of the Activity when it is

loaded. While it is always easier to build our UI using an XML file, there are times where we need to build

our UI dynamically during runtime (for example, when writing games). Hence, it is also possible to create

your UI entirely using code.

3.2 Widgets

 TextView is used in place of label which describe just a piece of a static text.

 EditText is having text entering and editing capability, it is generally used to enter the text inside

it.

 Button is used to pass an action or say an event.

 CheckBox having check/uncheck capability basically used for selection.

 RadioButton contain a round selection which is used in a group so that a user can not select

more than one option at the same time.

 RadioGroup is having more than one RadioButton when they are not allowed to get selected at

the same time.

 ToggleButton can be used in an event that describes on/off functionality.

 ImageView is used to contain an image in it.

 ImageButton is a button having a look of a particular selected image.

 Spinner is a view that displays one child at a time and lets the user pick among them.

 Gallery is a view that shows items in a center-locked, horizontally scrolling list.

 AutoCompleteTextView is an editable text view that shows completion suggestions automatically

while the user is typing. The list of suggestions is displayed in a drop down menu from which the

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

user can choose an item to replace the content of the edit box with.

 ProgressBar is a visual indicator of progress in some operation. It displays a bar to the user

representing how far the operation has progressed; the application can change the amount of

progress as it moves forward.

 GridView shows items in two-dimensional scrolling grid. The items in the grid come from the

ListAdapter associated with this view.

 AnalogClock is a widget display an analogical clock with two hands for hours and minutes.

 DigitalClock is a widget display a digital clock. It implements separate views for

hours/minutes/seconds

 DatePicker is a widget for selecting a date. The date can be selected by a year, month, and day

spinners or a CalendarView. The set of spinners and the calendar view are automatically

synchronized. The client can customize whether only the spinners, or only the calendar view, or

both to be displayed. Also the minimal and maximal date from which dates to be selected can be

customized.

 TimePicker is a view for selecting the time of day, in either 24 hour or AM/PM mode. The hour,

each minute digit, and AM/PM (if applicable) can be controlled by vertical spinners. The hour can

be entered by keyboard input. Entering in two digit hours can be accomplished by hitting two

digits within a timeout of about a second.

 ListView is a view that shows items in a vertically scrolling list. The items come from the

ListAdapter associated with this view.

 RatingBar is an extension of SeekBar and ProgressBar that shows a rating in stars. The user can

touch/drag or use arrow keys to set the rating when using the default size RatingBar. When using

a RatingBar that supports user interaction, placing widgets to the left or right of the RatingBar is

discouraged. The number of stars set will be shown when the layout width is set to wrap content.

3.2 View and ViewGroup

An Activity contains Views and ViewGroups. A View is a widget that has an appearance on screen.

Examples of widgets are Button, TextView, EditText, etc. A View derives from the base class

android.view.View. One or more Views can be grouped together into a ViewGroup. A ViewGroup (which

is by itself is a special type of View) provides the layout in which you can order the appearance and

sequence of views. Examples of Viewgroups are LinearLayout, FrameLayout, etc. A ViewGroup derives

from the base class android.view.ViewGroup. Each View and ViewGroup has a set of common attributes,

some of which are shown below.

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

Table 1: Common Attributes of View and ViewGroup

Attribute Description

layout_width Specifies the width of the View or ViewGroup

layout_height Specifies the height of the View or ViewGroup

layout_marginTop Specifies extra space on the top side of the View or ViewGroup

layout_marginBotto

m
Specifies extra space on the bottom side of the View or ViewGroup

layout_marginLeft Specifies extra space on the left side of the View or ViewGroup

layout_marginRight Specifies extra space on the right side of the View or ViewGroup

layout_gravity Specifies how child Views are positioned

layout_weight Specifies how much of the extra space in the layout to be allocated to

the View
layout_x Specifies the x-coordinate of the View or ViewGroup

layout_y Specifies the y-coordinate of the View or ViewGroup

Some of these attributes are only applicable when a View is in certain specific ViewGroup(s). For

example, the layout_weight and layout_gravity attributes are only applicable if a View is either in a

LinearLayout or TableLayout. Fill_parent constant indicates that it fills up with the entire width of its

parent, while wrap_content constant means that it sizes itself with the contents contained within it. For

e.g. If you do not wish to have the <TextView> to occupy the entire row, you can set its layout_width

attribute to wrap_content.

Android supports the following ViewGroups:

 LinearLayout

 AbsoluteLayout

 TableLayout

 RelativeLayout

 FrameLayout

 ScrollView

It is recommended to nest different types of layouts to create the dynamic UI. The LinearLayout arranges

views in a single column or single row. Child views can either be arranged vertically or horizontally. The

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

default orientation of LinearLayout is set to horizontal. To change its orientation to vertical, we can

change the orientation attribute to vertical also as depicted below.

<LinearLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

android:orientation=”vertical”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

The AbsoluteLayout lets you specify the exact location of its children using android:layout_x and

android:layout_y attributes. Ideally AbsoluteLayout is used when we need to reposition our views when

there is a change in the screen rotation.

<?xml version=”1.0” encoding=”utf-8”?>

<AbsoluteLayout

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<Button

android:layout_width=”188px”

android:layout_height=”wrap_content”

android:text=”Button”

android:layout_x=”126px”

android:layout_y=”361px”

/>

</AbsoluteLayout>

The TableLayout groups views into rows and columns. We use the <TableRow> element to

designate a row in the table. Each row can contain one or more views. Each view you place within a row

forms a cell. The width for each column is determined by the largest width of each cell in that column.

<?xml version=”1.0” encoding=”utf-8”?>

<TableLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:layout_height=”fill_parent”

android:layout_width=”fill_parent”

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

android:background=”#000044”>

<TableRow>

<TextView

android:text=”User Name:”

android:width =”120px”

/>

<EditText

android:id=”@+id/txtUserName”

android:width=”200px” />

</TableRow>

</TableLayout>

The RelativeLayout lets you specify how child views are positioned relative to each other. Each

view embedded within the RelativeLayout have attributes that allow them to align with another view. The

attributes are as below. The value for each of these attributes is the ID for the view that you are

referencing.

 layout_alignParentTop

 layout_alignParentLeft

 layout_alignLeft

 layout_alignRight

 layout_below

 layout_centerHorizontal

<?xml version=”1.0” encoding=”utf-8”?>

<RelativeLayout

android:id=”@+id/Rlayout”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<EditText

android:id=”@+id/txtComments”

android:layout_width=”fill_parent”

android:layout_height=”170px”

android:textSize=”18sp”

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

android:layout_alignLeft=”@+id/lblComments”

android:layout_below=”@+id/lblComments”

android:layout_centerHorizontal=”true”

/>

<Button

android:id=”@+id/btnSave”

android:layout_width=”125px”

android:layout_height=”wrap_content”

android:text=”Save”

android:layout_below=”@+id/txtComment”

android:layout_alignRight=”@+id/txtComment”

/>

</RelativeLayout>

The FrameLayout is a placeholder on screen that we can use to display a single view. Views that

we add to a FrameLayout is always anchored to the top left of the layout. We can add multiple views to a

FrameLayout, but each will stack on top of the previous one. In the below example we must have an

image named androidlogo.png under res/drawable folder.

<?xml version=”1.0” encoding=”utf-8”?>

<AbsoluteLayout

android:id=”@+id/widget68”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<FrameLayout

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_x=”40px”

android:layout_y=”35px”

>

<ImageView

android:src = “@drawable/androidlogo”

android:layout_width=”wrap_content”

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

android:layout_height=”wrap_content”

/>

</FrameLayout>

</AbsoluteLayout>

A ScrollView is a special type of FrameLayout in that it allows users to scroll through a list of

views that occupy more space than the physical display. The ScrollView can contain only one child view

or ViewGroup, which normally is a LinearLayout. One recommendation is there for not to use a ListView

together with the ScrollView. The ListView is designed for showing a list of related information and is

optimized for dealing with large lists.

<?xml version=”1.0” encoding=”utf-8”?>

<ScrollView

android:id=”@+id/widget54”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

xmlns:android=”http://schemas.android.com/apk/res/android”

>

<LinearLayout

android:layout_width=”310px”

android:layout_height=”wrap_content”

android:orientation=”vertical”

>

<Button

android:id=”@+id/button1”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”Button 1”

/>

<EditText

android:id=”@+id/txt”

android:layout_width=”fill_parent”

android:layout_height=”300px”

/>

</LinearLayout>

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

</ScrollView>

4. Dynamic UI Creation using XML Inflation

[8] Basically there are two ways to create a User Interface in Android, either through XML or by creating

the UI Programmatically. In this section we are going to see that how we can mix the two and use it for

building dynamic User Interfaces. This kind of example can be explored when the application contains

more UI elements to appear on the same screen and an action of the user achieved through one of the

UI elements we have added.

We can achieve it in two ways:

 The dynamic part of the UI can be created programmatically. However it is not a very good way

to mix UI and code. So, we can

 Define the dynamic UI too as an XML and use XML inflation to include it into the existing UI. We

will see how to do the 2nd way, which probably is a good practice too.

Assume I have a very simple linear layout. In that I want to include a button. I can do it as part of the

main XML itself. However, assume that this button is supposed to be reused in many activities and

hence I have defined it as a separate XML.

Main.xml

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent”

android:id=”@+id/layout1”

>

</LinearLayout>

buttons.xml located under res/layout folder

<?xml version=”1.0” encoding=”utf-8”?>

<Button

xmlns:android=”http://schemas.android.com/apk/res/android”

android:id="@+id/button_small_left"

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

style="?android:attr/buttonStyleSmall"

android:text="Press to close"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

/>

Activity’s onCreate(…) method of the InflateView class

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

final LayoutInflater inflater = (LayoutInflater)

getSystemService(Context.LAYOUT_INFLATER_SERVICE);

Button b =(Button)inflater.inflate(R.layout.buttons,null);

lLayout =(LinearLayout)findViewById(R.id.layout1);

lLayout.addView(b);

}

First line indicating a call to Activity’s onCreate() method by passing the previous state as a parameter of

Bundle type. Second line is setting the current view’s layout as main.xml. Third line is used to instantiate

layout XML file into its corresponding View objects. getSystemService(String) method is called to

retrieve a standard LayoutInflater instance that is already hooked up to the current context and correctly

configured for the device we are running on. We are getting a handle to the LayoutInflater through the

getSystemService(String) method. This inflater has a method inflate to which we pass the buttons.xml by

passing the parameter R.layout.buttons. Then, we try to append this button to the LinearLayout that

already exists and is set as the view in line 2 setContentView(R.layout.main). So we get a handle to the

LinearLayout lLayout and add the new button to it in the last line. This one is the simplest way to inflate

an XML and append it to an existing view. Here is the piece of code which demonstrates the dynamicity.

b.setOnClickListener(new OnClickListener()

{

public void onClick(View v)

{

// getChildAt() method returns the view at the specified //position in the group.

if (lLayout.getChildAt(2) == null)

{

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

TextView tv = (TextView)inflater.inflate(R.layout.text, null);

lLayout.addView(tv);

}

}

});

On the click of this dynamically added button, we are showing how we can add more to the UI

dynamically through inflation. Assume, on the click of the button, we want to show some new text. This

TextView is defined in another XML called text.xml which is also in the res/layout folder. So, we are

inflating from this XML and appending it to the LinearLayout view. So, a lot can be achieved for dynamic

UI through inflation.

5. Model View Controller Concept

[7] Android GUI is single-threaded, event-driven and built on a library of nest-able components. The

Android UI framework is organized around the common Model-View-Controller pattern.

5.1 The Model

The model represents data or data container. You can see it as a database of pictures on your device.

Say, any user wants to hear an audio file, he clicks play button and it triggers an event in your app, now

the app will get data from data store or database and as per input and creates data to be sent back to the

user.

5.2 The View

The View is the portion of the application responsible for rendering the display, sending audio to

speakers, generating tactile feedback, and so on. For example the view in a hypothetical audio player

might contain a component that shows the album cover for the currently playing tune. User will always

interact with this layer.

International Journal of Enterprise Computing and Business Systems

ISSN (Online) : 2230-8849

Volume 2 Issue 1 January 2013

International Manuscript ID : ISSN22308849-V2I1M1-012013

Fig 3. Model-View-Controller Concept

5.2 The Controller

The Controller is the portion of an application that responds to external actions: a keystroke, a screen

tap, an incoming call, etc. It is implemented as an event queue. On User’s action, the control is passed

over to controller and this will take care of all logic that needs to be done and prepare Model that need to

be sent to view layer.

References

[1] Android Developers official website, http://developer.android.com/guide/topics/ui/index.html

[2] A visual interface editor for Android, http://www.droiddraw.org/

[3] Lauren Darcey and Shane Conder, “Android Wireless Application Development”, Pearson Education,

2nd ed. (2011)

[4] Reto Meier, “Professional Android 2 Application Development”, Wiley India Pvt. Ltd. (2011)

[5] Mark L Murphy, “Beginning Android”, Wiley India Pvt Ltd. (2009)

[6] Sayed Y Hashimi and Satya Komatineni, “Pro Android”, Wiley India Pvt Ltd. (2009)

[7] Rick Rogers and John Lombardo , “Android Application Development”, O'Reilly Media, Inc, 1st ed

(2009)

[8] Technical Blog of Sai Geetha dedicated to Android, http://saigeethamn.blogspot.com/

[9] Jason Morris, “Android User Interface Development, Beginner’s guide”, PACKT publishing Ltd.

	Attribute
	Description

