
International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

WINDOWS-BASED APPLICATION AWARE NETWORK INTERCEPTOR

Ms. Shalvi Dave[1], Mr. Jimit Mahadevia[2], Prof. Bhushan Trivedi[3]

[1] Asst.Prof., MCA Department, IITE, Ahmedabad, INDIA

[2] Chief Architect, Elitecore Technologies Ltd., Ahmedabad, INDIA

[3] Director, MCA Department, GLSICT, Ahmedabad, INDIA

Abstract

To protect important network resources from threats or malicious access, one has to implement

security at both network level and host level. Any IDS or IDPS achieves this by normally using a

set of pre-defined rule-sets. However, existing evasion techniques have become more intelligent

by invading the network or a host by effectively pre-judging the rules defined and used by

IDS/IDPS. In addition, the false positives rate is usually high for such systems, which also

hampers overall network performance. The paper aims to describe how a novice approach

helps identifying applications as an attacker or a victim by intercepting system calls on

Windows. Our system introduces three main modules: Network Interceptor, Event Collector and

Administrative Server. Together, they identify an attack with help of NIDS along with the name

and version of the attacker and victim applications that we can protect in future. This paper first

describes how Network Interceptor intercepts system calls and classifies an application as an

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

attacker and a victim. An event log is also maintained for such attacker applications within the

network. The event log contains information such as Source and destination IP, application

name and version, timestamp etc. It is also used to generate administrative reports. The

administrator to take corrective measures for such applications uses these reports.

Keywords: Event Collector, Layered Service Provider, Network Interceptor, Winsock

I. Introduction

 The Network Based IPS (NIPS) is also denoted as in-line proactive protection. It is also

proactive because it intercepts all network traffic and inspects for suspicious behavior and

code. We require intercepting live data because we need to send it to IDS engine to get it

verified. This interception has to be real time along with dropping or blocking functionality.

We classify two types of applications running in a network: Client application and Server

Application. Whenever a client application in the network requests for any service outside the

network, it may become vulnerable to attacks from servers running outside the network. In

addition, when any service provided by a Server application within the network is requested

by an outside application, it may also launch an attack on server application. Apart from this,

any vulnerable or infected application, client or server can possibly make attacks, to an

application outside the network.

 We have designed and implemented a Windows-based Network Interceptor (NI) using

Layered Service Provider of Winsock 2 in C language, which intercepts live data at run-time

when any application launches an attack or when any application is being victimized. The

Network Interceptor intercepts system call functions to retrieve actual network data along with

application information. It captures socket function calls such as read, write, sendto, recvfrom

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

etc. NI sends application information to SURICATA engine for classification of an attack, and

if attack is found, it logs the attack-related data. It then generates event log including

application related information using Logging Agent [6]. Network Interceptor along-with IDS

logging agent sends this event log to Event Collector. The Event Collector stores this event

log in a database. This event log helps to generate administrative reports. These reports

provide various attack related statistics. In future, the Network Interceptor can query the

administrator for new applications or existing connections. The administrator, in turn, will

match the application information with the quarantine database and send the decision back to

Network Interceptor. Using this decision, it would prevent attacks. Thus, Network Interceptor,

as a subsystem, can be used as a part of IDPS.

II. Related Work

IDPS solutions are widely used nowadays for protecting both hosts and network

infrastructure from attacks of all kinds including DOS attacks, malware, worms, Trojans, and

application specific threats [1]. An IDPS detects a potential security breach, drops the

malicious traffic, logs the information and sends alarm to the administrator. In this section, we

describe two systems: SNORT and Bluebox HIDS.

A. Snort

 Snort, open-source IDS, uses a set of pre-defined signatures [2]. Snort sends attack

information on syslog, which contains only network and attack related information. It does not

get stored into database for future analysis. In addition, Snort also does not have prevention

capabilities on Windows platform, which is very much required to achieve security effectively.

 B. Bluebox, policy driven HIDS

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

 Attack log analyzer of bluebox HIDS correlates network logs and system logs [3]. There are

two major problems with this approach. First, correlation analysis of large data is quite

impossible. In addition, as events are generated from different subsystems, there are chances

that correlation analysis might not be precise. Second, Policy defined in bluebox enforces

rules controlling application access to system resources like socket [3]. In addition, pre-

defined policies can define overall system’s behavior but cannot change it during run-time. It

has to be automatic and run-time to achieve better security.

 Need for a Windows-based Network Interceptor:

In our solution, we have tried to provide solutions to the above-mentioned problems. In our

approach, we store events into the database so it can be used for future analysis. We also

store application information like application name and version. It can be used in future to

quarantine application or to apply any hot fixes if available. We also achieve precision

because we include run-time event information.

In addition, Network Interceptor hooks system functions and works on real data so as soon

as it detects an attack. Hence, in future, it can drop that data to achieve real time prevention.

Therefore, an IPS or IDPS solution can also use Network Interceptor.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

FIG. 1 System Architecture

Figure 1 describes how Network Interceptor is implemented on Windows platform. We have used

Postgre SQL database to store event logs. We have divided the entire system into two main functioning

areas: Network Interceptor and Event Logger. The Event Logger is already detailed in our previous

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

paper [6]. In this paper, we describe working of system, followed by how Network Interceptor hooks the

system call and access the real data. How Network Interceptor with the help of Logging Agent and

Suricata together identify attack classified as: Inside client attacking outside server, inside client being

victimized by outside server, inside server being victimized by outside client and inside server attacking

outside client has been already covered in our previous paper [6]. We also describe how Network

Interceptor along-with Logging agent and Suricata detects attacks real time and generates event-log

with help of Event Collector. In the end, the results of all four class studies are shown.

III. Working

Our system consists of three modules: Network Interceptor, Event Collector and Administration

Server. Logging agent and network interceptor are installed on each host on the network. Event

Collector and Administration server are centralized. Logging agent and network interceptor

communicates with each other via TCP. The above diagram shows the actual working of our Windows-

based Network Interceptor.

To provide network services or to access network resources, applications uses native socket

interface provided by Windows. Network interceptor has been instantiated by Winsock for every socket.

To get access of this network data, Network Interceptor hooks this socket interface. As it hooks directly

in socket, it also gets the socket information (source IP, source Port, destination IP, Destination port,

protocol) and details of application (application name, version etc.) which has opened that socket.

When any application sends or receives the network data via socket, Network Interceptor’s hooking

function is called. Details of hooking mechanism have been described later in this paper under Network

Interceptor section. In this blocking function, NI gets the control on data and holds processing of the

same. Network Interceptor, then with the help of Logging agent and Suricata, inspects the network data

to detect possible attack on or by this application. In case of attack, Suricata provides name of the

attack, severity of the attack and type of the attack, which we have briefed later in this paper under

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

Suricata. We have described details of event and quarantine log in our previous paper [6]. Network

Interceptor can use this information in future to prevent attacks or drop existing connection.

The following section describes how Network Interceptor identifies attacker and victim applications

run- time. It retrieves real data by intercepting function calls, sends this information to logging agent.

Logging agent uses Suricata for attack identification and classification and sends result back to

Network Interceptor. The following class studies describe how Network Interceptor classifies attacks:

A. Classification Of Attacks

This section describes how Network Interceptor intercepts application aware information real time.

Then role of each component is explained with context to the entire system architecture.

For a proof of concept, we have implemented Apache web server and IE application on Windows

platform. We have taken four windows hosts in our lab setup. Two hosts are configured as Internet

Hosts and other two are configured as Inside hosts. One inside host is running with IIS web server. One

Internet host is running with Apache web server. Another Internet host is deployed with IE to make

request to internal web server. For storing application aware event log, we are using Postgre SQL

database. We have classified signatures in two different kinds of rule-sets using flow direction already

specified into signature.

Attack On Client

When any client accesses any service from server, there are high chances that an attack can be

launched on client by the program running on remote server. This attack is client specific. It is due to

any known vulnerability of specific client version. The client –side attack can be inbound as well as

outbound depending on the direction of connection.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

 A. Outbound Attack (Inside Client being victimized): One of the desktop machines tries to access

site hosted on the server on Internet using Internet Explorer. If this site or server is being compromised

then it can launch an attack on the internet explorer application. One such type of attack is “Heap Buffer

Overflow”. If the version running of Internet Explorer is vulnerable to this attack then it is being

victimized by such an attack. Network Interceptor gets the name and version of application along-with

criticality of attack. In future, it can use this for prevention. The following diagram shows the actual

working of the same:

FIG.2. Client-Side Outbound Attack

 B. Inbound Attack (Inside server attacking on outside client): In this scenario, IIS server is running

in our network. Some client from the internet tries to access the site using Internet Explorer. If our

server is infected or compromised, then it can launch an attack on the remote client’s IE. Our Network

Interceptor intercepts and detects this attack and sends the log to central event collector via logging

agent.

Attack On Server

When anyone requests any service from the server, he can also land an attack along with the

request. If running application server has any known vulnerability, services can suffer due to attack.

Again, depending on direction of connection, attack can be inbound as well as outbound.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

A. Outbound Attack: A server is hosted on the internet. One of the desktop machines in our network

tries to launch an attack using an IE application. This application launches “Remote Code Execution

Attempt” attack on to remote server. Since it is an attack, which is generated from within the network,

information is also stored into quarantine database.

FIG.3. Server-Side Outbound Attack

 B. Inbound Attack: In this case, IIS server is running in our network. Client attempts directory

traversal on our server. The following figure shows how an inbound attack occurs in the network:

FIG.4. Server-Side Inbound Attack

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

Functionality of Network Interceptor

As described in previous section, Network Interceptor with the help of logging agent and Suricata

inspects traffic to check whether exploit has been found. If found then agent sends an event to central

event collector. If the attack is classified as in-bound attack, Network Interceptor sends an alarm to the

administrator. If the attack is classified as out-bound, application information is stored in the quarantine

database.

Network Interceptor can be used by any IDS/IPS for detection and prevention. The reason is it

intercepts live application data at run-time. Using quarantine information stored in the database, it can

prevent new attacks or drop existing connections. Also, using quarantine information, administrator can

apply security hot-fixes if available. Thus Network Interceptor can be used by both IDS as well as IPS.

As mentioned before we are using Suricata in our solution. Following is a brief description of how

Suricata is used by our system.

IV. Suricata

 Our Network Interceptor inspects real data with the help of IDS logging agent and Suricata.

Suricata uses pre-defined signature rule-set to identify an attack. Network Interceptor sends data along

with application and connection information to Suricata via logging agent. Therefore, Suricata does not

need to track the connection for TCP Reassembly. After vulnerability scanning, Suricata sends result

back to logging agent. Result includes information about attack if detected along with its severity.

Suricata uses standard rule-set available from emerging threats. IDS signature rule-set has to be

updated from time to time to detect new threats. The logging agent contacts the administration server to

check availability of new signature in the signature database. If new signature is found, logging agent

also updates Suricata with new signature.

 As already mentioned, we have designed and implemented three modules for our solution. The first

one is Network Interceptor that is described below:

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

V. Network Interceptor

Intrusion prevention systems are considered extensions of intrusion detection systems because they

both monitor network for malicious activity. The main differences are, unlike intrusion detection

systems, intrusion prevention systems are placed in-line and are able to actively prevent/block

intrusions that are detected [4]. To achieve this one need to sit inline in to the connection flow and

monitor them for malicious activity. As soon as one found it should also drop that connection and log

the event. Our subsystem Network Interceptor can be used for prevention of new attacks or dropping

existing connections. Network Interceptor sits inline of the application socket data, it can be used to

prevent application from different attacks by dropping malicious connections. We have described

technical approach to achieve the same in following paragraph.

Network Interceptor can use two different techniques on Windows: One is using NDIS Framework,

which works at Kernel Level and intercepts raw network data. Another approach is using WINSOCK

Hooking, which works at intermediate level and intercepts socket calls and data. We have chosen

WINSOCK hooking as it also provides application information along with socket call interception.

There are different methods available to implement WINSOCK Hooking like replacing WINSOCK

related DLLs, DLL Hijacking and writing LSP Driver. Out of all these approaches, Microsoft has

recommended writing LSP driver. All other approaches may lead to compatibility issue with different

version of Winsock DLLs. For this reason, we have chosen to implement Transport Layered Protocol

using WINSOCK 2 SPI Framework.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

FIG. 5. Layering Using Network Interceptor

Network Interceptor is being used to extend an existing transport service provider by

implementing a protocol stack as a services, which supply functions that set up connections, transfer

data, exercise flow control, error control, and so on. Network Interceptor is implemented as a standard

Windows DLL. To use a LSP SPI Architecture of Windows we need to register our DLL with SPI

Framework’s API called WSCInstallProvider [1]. Once we register this DLL, all transport SPI functions

implemented by Network Interceptor are made accessible to ws2_32.dll via the LSP's dispatch table

using a callback function mechanism. Therefore, Network Interceptor can intercept Winsock 2 functions

before they are processed by ws2_32.dll and it can override the functions. We are interested in

functions, which are being used by application to send or receive the data. Such functions are normally

send, recv, sendto, recvfrom, etc. which help in intercepting the data.

When any application wants to use socket in windows it must initialize WINSOCK library. As soon

as an application initiates the connection for the first time, our Network Interceptor DLL also gets

initialized along with it. During the time of initialization, we supply pointers of our callback functions,

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

which get registered into dispatch table. Therefore, when application calls any socket functions like

send, recv, create, etc., it first calls our function. Our function gets the access of socket handle and

transmitted data. It sends this data to SURICATA for inspection and waits for its result. The result

determines future decisions of Network Interceptor. Upon receipt of the result, it would either ALLOW or

DENY this connection and achieve prevention capabilities. Thus, Network Interceptor is tested as a

sub-system to achieve and implement run-time prevention. The idea behind testing NI for both intrusion

detection and prevention is to develop an application aware IDPS.

VI. Event Collector

Using the concept of Producer- Consumer mechanism, we divide the Event Collector into the three

sub-systems: Event Receiver, Queue and Database Plug-in.

FIG. 6 Event collector

Figure 6 describes the three sub-systems. We have described a detailed explanation for Event

Collector in our paper on Event Logger [6]. The logging agent use UDP protocol to send event log to

the Event Collector. Event collector receives this log and inserts it in the queue. The database plug-in

will fetch this log from the queue and store it in the database.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

The application name and version helps the administrator to find out whether any new security hot-

fixes are available for the application. If one found, the administrator applies this hot-fix on the

application. If there is an out-bound attack, and if Suricata classifies the attack as Critical, then

application name and version

is stored in a quarantine database. Using this quarantine information, Network Interceptor can block

connections run-time and quarantine applications if their information matches with quarantine database.

VII. Administration Server

Various reports are generated from the event information stored in the database by Event Collector.

They are described in our paper on Event Logger [6]. The administrator can use this information to

either block or quarantine this application.

When administrator logs into the admin server, he gets alerts if any unacknowledged quarantine

application has been found in application quarantine database. Administrator needs to acknowledge

this alert, if he chooses to remove this application, from application quarantine database, then next time

FIG. 7. Event Log

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

the application can acquire network resources. Administrator can also choose to apply any new security

hot-fixes to application if available. In the later case, as application information has been changed, due

to security hot-fix, it is considered as a new application and it can acquire network resources.

Conclusions & Future Extensions

From the above-mentioned technique, we can conclude that Network Interceptor and Event Logger

are pre-requisites, which helps to improve security for network resources with application aware

information. Administrator can watch the list of quarantined application and take a corrective action if

implemented as IDS or IDPS. It can also automate some functions for using the same NI for prevention

deploying it with either IPS or IDPS. An administrator or automated solution can

 remove the application from the quarantine list or can inspect the host that has landed an attack. This

server will also work as a signature distribution server. All IPS engines will connect to this server and

download the signature updates.

We can further extend this design to achieve run-time prevention and drop existing connection when

Network Interceptor detects an attack. It also helps reduce false positives.

References

[1] Layered Service Provider of Winsock2 available at

http://www/microsoft.com/msj/0599/LayeredService.aspx

[2] Snort functioning available at www.snort.org

[3] Suresh Chari and Pau-chen Cheng: ACM Transactions on Information and System Security, Vol. 6,

No. 2, May 2003. BlueBoX: A Policy-Driven, Host-Based Intrusion Detection System

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

[4] Intrusion Prevention Systems available at http://en.wikipedia.org/wiki/Intrusion_Prevention_system

[5] Shalvi Dave, Bhushan Trivedi, Dashang Trivedi, International Conference on Computer Modelling &

Simulation, Simulation Of Security Agent Using Anomaly Based Detection and VLAN Steering

[6] Shalvi dave, Jimit Mahadevia, Bhushan Trivedi, submitted to International Conference on Computer,

Communication and Electrical Technology, Application Aware Event Logger

