
I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

Analyzing the Impact of Software Reliability Growth Models on Object
Oriented Systems during Testing

Sujata Khatri

Deen Dyal Upadhyaya College, Delhi, India

R.S.Chhillar

Department Of Computer Sc. And Applications, Rohtak, India

Arti Chhikara

Maharaja Agrasen College, Delhi, India.

ABSTRACT:Software applications are fastest growing trend in the virtual world and the possibilities regarding the features

and functions provided by a specific application is generating tremendous interest amongst a vast number of people around
the globe. As the interest grows, so does the demand for application. Since development of large software products involves
several activities which are need to be suitably coordinated to meet desired requirements. Hence in today’s world the
importance of developing quality software is no longer an advantage but a necessary factor. Software testing is one the most
powerful methods to improve the software quality directly.Prior knowledge of bug distribution of different complexity in
software can help project managers in allocating testing resources and tools.Various researchers have proposed models for
determining the proportion of bugs present in software of different complexity but none of these models have been applied to
object oriented software.Through this paper, Wehave proposed a model that will determine the proportion of different bug
complexity. The paper also suggests the suitability of the proposed model for a particular data set. We haveapplied these
models on two data sets based on object oriented methodology namely SQL for Python and SQuirreLSQL Clientsoftware
developed under open source environment.

Keywords
-Bug Complexity, Objects Oriented approach,Software Reliability Growth Model, Testability.

1. INTRODUCTION

Software applications are the fastest growing trend in the virtual world and the possibilities regarding the
features and functions provided by a specific application is generating tremendous interest amongst a vast
number of people around the globe. As the interest grows, so does the demand for application. Development
of large software products involves several activities that need to be suitably coordinated to meet desired
requirements. Over the last two decades the traditional procedure-oriented methodology in software
development has been supplanted by a more sophisticated, flexible and reusable object oriented approach.
Object oriented programming systems are characterized by several traits, with information is localized around
objects rather than functions and data as in procedure oriented approach. An object oriented approach treats
the data as a critical element in program development and does not allow it to flow freely around the system.
Meyer defines object-oriented design as "the constructionof software systems as structured collections of
abstract data type implementations" [1]. The emphasis on object oriented language is on defining abstraction
of a model conceptrelatedto an application domain [2].To understand Object Oriented Programming Systems
thefollowing high level concepts must be introduced: objects, classes, inheritance, polymorphism, and dynamic
binding. Software objects are conceptually similar to physical objects: they too consist of state and related
behavior. An object stores its state in fields (variables) and exposes its behavior through methods (functions).
Methods operate on an object’s internal state and serve as the primary mechanism for object-to-object
communication [3].
Software testing is one of the most powerful methods to improve software quality. The IEEE defines testing as
"the process of exercising or evaluating a system or system component by manual or automated means to
verify that it satisfies specified requirements or to identify differences between expected and actual results" [3].

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

Software testing is difficult and expensive and testing object oriented system is even more difficult due to its
features like inheritance, dynamic binding and polymorphism. Testing of object oriented software has
presented numerous challenges due to its features. A tester often needs to spend significant time in
developing lengthy testing code to ensure that system under test is completely tested.

The object oriented approach has been widely used for the development of closed source software and
open source software. In open source software developers are also the users meaning thereby the one who
remove the bugs are also responsible for generating bugs [4].Open source project has more advantage in
terms of fewer bugs, better reliability, no vendor dependence,shorter development cycles, quick support and
educational benefits. In the available literature, many papers address the issue of open source software [5, 6,
7, 8, and 9].

Software reliability plays an important role in determining reliability growth of software during testing. The
software reliability growth model is the tool which can be used to evaluate the software quantitatively, provide
development test status, schedule status and monitor the changes in reliability performance. Most of these
models are based either on failure count or time between failures. These models are used as estimators i.e.
they are used during the software testing and are based on historical failure data.It was Kapur et al. [10] who
firstlydeveloped reliability growth model for object oriented software system. The model assumes that the
software system may fail due to three types of errors, namely erroneous communication between objects,
erroneous execution of private(loca1) variable/data, or erroneous execution of public (global) variable/data (if
they exist). The model further assumes that the time dependent behavior of the instruction execution follows
either Exponential or Rayleigh curve, while the error removal phenomenon follows Non Homogeneous Poisson
Process (NHPP). The model has been validated using a simulated error data. Recently, Singh et al. [19] have
also developed a software reliability growth model for object oriented system which categorizesbugs into
simple, hard and complex types.

In real practice, it is important to know that how many types of bugs exist in the software at any time, so
that different testing strategy and testing effort can be applied to remove those bugs. Bugs may be simple,
hard, complex, more complex or even more complex. Kapur et al. [11] introduced a flexible model called the
generalized Erlang SRGM by classifying the bugs in the software system as simple, hard and complex. It is
assumed that the time delay between the failure observation and its removal represent the complexity of bugs.
Another model according to Kapur et al.[12], describes the implicit categorization of bugs based on the time of
detection of fault. However, an SRGM should explicitly define the different types of bugs as it is expected that
any type of fault can be detected at any point of testing time. Therefore, it is desired to study testing and
debugging process of each type of bugs separately [13 and 14]. The mean value function of SRGM is
described by the joint effect of the type of bugs present in the system. Such an approach can capture the
variability in the reliability growth curve due to errors of different severity depending on the testing environment.
Another model of Kapur et al. [16]describes the errors of different severity in software reliability growth model
using different debugging time lag functions. Kapur et al. [17] also describe flexible software reliability growth
model using a power function of testing time for defining errors of different severity. Recently, Singh et al. [18]
havedeveloped a generalized software reliability growth model that determines proportion of bugs of different
complexity from open source software.

To the best of our knowledge, no research paper has addressed the issue of complexity of bugs in object
oriented software systems. In this paper,Wepropose a generalized model which determines the proportion of
complexity of bugs lying dormant in object oriented software system.

In this paper, wehave used actual failure data of two softwares namely SQL for python and SQuirreL SQL
Client software developed under open source environment. And the development of software follows object
oriented approach.

2. MODEL DEVELOPMENT
In this section, we have formulated a generalized model that will determine the proportion of bug

complexity. We also assume that bugs are occurring in software due to accession of private, protected and
public variables.

2.1. Notations:

()m t : mean value function of the expected number of

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

detected/removed bugs the time interval [0,t].

i : type of bug.

ip : proportion of type i bugs.

iq : proportion of type i accession

()i ia ap= : initial content of type i bugs.

bi : bug removal rate per bug for type i.
J : number of stages for removing a bug in the
software.

2.2. Assumptions of the Model
Following assumptions have been taken for measuring the bug complexity of object oriented software system.
1. A finite number of test cases are prepared to ensure that the
software works according to the requirements andspecifications. Each
test case is designed to execute a finite number of instructions.
2. The time dependent behavior of the instruction execution is
represented by Exponential or Rayleigh curve.
3. The software is prone to failure due to the following causes

3.1 Erroneous execution of internal variable/data of the
objects resulting in different types of bugs.
3.1.1 Bugs due to private (local) variable/data.
3.1.2 Bugs due to protected variable/data.
3.1.3 Bugs due to public (global) Variable/data.

4.The Bugs existing in the software are of n types and each
type of bug is modeled by a different growth curves as per
their complexity.
5.We assume that first two type of bugs (namely simple and
hard) are occurring due to accession of private and protected
variables whereas other type of bugs name complex or more
complex are occurring due to accession of public variables.
6.The failure observation/error removal phenomenon follows
NHPP.
7. No new bug is introduced during removal process.
8.The bug removal intensity per execution is proportional to
the remaining bugs in the software.
9. Debugging time lag will increase as complexity of bug
increases.
10.The number of instructions executed per unit of time is
proportional to the remaining number of instructions not
executed.

2.3. Model Formulation
Let total number of instructions execution is W(t) at any give time t. These instructions cause an accession

to private, protected and public variable [10 and 19].
Based on the assumptions 2 and 10, the number of instructions per unit of time can be written as

() () ()()
dW t

x t A W t
dt

= −
 (1)

A is total number of instructions to be eventually executed andx (t) is the rate of instruction execution per
instruction.
Solving above equation we get:

() ()
0

1 exp

t

W t A x t dt
  

= − −      
∫

 (2)

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

Depending upon the value of x (t), different types of instruction execution functions can be formulated. If

x(t)=B i.e. instructions execution rate is independent of time then it follows exponential curve (instructions are
uniformly executed) i.e.

() ()()1 expW t A Bt= − −

If x(t)=Bt, then it follows Rayleigh curve means instructions are not uniformly executed with respect to time.

()
2

1 exp
2

Bt
W t A

  
= − −     

On each Instruction Execution (IE), the software may execute any of its variable types, namely, private,
protected and public. The expected number of accessions to private, protected and public variables is
respectively given as

() ()1 1E t q W t=
,

() ()2 2E t q W t=
and

() ()3 3E t q W t=

The total number of accessions due toW(t) number of instruction execution is

() () () () () ()1 2 3 1 2 3E t E t E t E t q q q W t= + + = + +

Using assumptions (4-9), the bug removal intensity per accession to private, protected and public variableis
given as:

Bug removal equation due to accession of private variable is
(Case 1: Simple bugs):

Hereb(t) is the bug detection/removal rate and this rate will be different for bugs of different complexity as

follows in [20, 22 and 23].a is the initial bug content in software, p1is proportion of simple bugs, ()1m t is the

number of bugs due accession of private variable and ()b t is the bug detection rate.

Firstly by taking ()b t = b in case of simple bugs and solving above differential with initial condition m(0)=0,

we get () ()()()1 1 11 expm t ap bE t= − − (4)

Bug removal equation due to accession of protected variable is
 (Case 2: Hard bugs):

()

() ()()
2

2

2 2

2 1

dm t

b tdt ap m t
dE t bt

dt

= −
+

Where ()2m t is the number of bugs due accession of protected variable and 2p is proportion of hard bugs.

Solving above differential with initial conditionm(0)=0, we get

() ()() ()()()2 2 2 21 1 expm t ap bE t bE t= − + − (5)

Bug removal equation due to accession of public variable is
(Case 3: Complex bugs):

()

() ()()
3

3 2

3 32 2
3

2 1
2

dm t

b tdt ap m t
dE t b t

bt
dt

= −
 
+ + 

 

Where ()3m t is the number of bugs due accession of public variable and 3p is proportion of complex bugs.

Solving above differential with initial condition m(0)=0, we get

() ()
()()

()()
2

2

3 3 2 31 1 exp
2

bE t
m t ap bE t bE t

  
  = − + + −
  

  

 (6)

()

() () ()()
1

1 1

1

dm t

dt b t ap m t
dE t

dt

= −

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

The total error removal is given as

() ()()()
()() ()()()

()
()()

()()

1 1

2 2 2

2

3

3

3

3

1 e x p

1 1 e x p

1 1
2

e x p

m t a p b E t

a p b E t b E t

b E t
b E t

a p

b E t

= − − +

− + − +

  
  − + +
  

  
 − 

 (7)

Here ()1 2 3a a p p p= + + and 1 1 2 2 3 3, ,E q E E q E and E q E= = =

or () ()()1 2 3E t E t q q q= + +

 Further assuming that due to accession of public variables more complex bugs are generated in the software
and the mean value function obtained in equation (7) can be generalized to n different types of bugs depending
upon their complexity. We may write

Or

() ()() ()()1

1 0

1 exp
!

j
n i

i

i i

i j

bq E t
m t ap bq E t

j

−

= =

  
  = − −
  

  
∑ ∑ (8)

Here, 1p and 2p are proportions of bugs due to accession of private and protected variable whereas 3p , 4p I..

np are proportions of bugs due to accession of public variables as follows in assumptions 3 , 4 and 5.

1q , 2q are proportions of accession due to private and protected variables whereas 3q , 4q .. nq are proportions of

accession due to public variables. We derive different combination of models namely model 1, model 2,
model 3, model 4, model 5 and model 6 from above equation.

3. MODEL VALIDATION
To verify the proposed model that determines types of bugs present in the software due to accession of
private, protected and public variable and proportion of accession of private, protected and public variable, we
estimated the unknown parameters by using SPSS software tool.We have taken only six models as it increase
the number of parameters which makes parameter estimation moredifficult.

3.1 Description of Data sets

Data set-1:MySQL for Python software has been developed under open source environment. We collected
failure data of MySQL for Python from 4/25/2001 (first bug reported) to 11/23/2009; during this period 144 bugs
were reported on bug tracking system (www.sourceforge.net). We have considered only valid bugs which are
fixed.

Data set-2:SQuirreL SQL Client is a graphical SQL client written in Java that allow to view the structure of
a JDBC compliant database, browse the data in tables, issue SQL commands etc. This software has been
developed under open source environment www.sourceforge.net). I collected failure data of SQuirreL SQL
Client from 10/3/2001(first bug reported) to 4/26/2010, during this period 298 bugs were reported on bug
tracking system.I have used these data sets earlier also, but here I used different models.

We have simulated the instruction executed data with assumption that expected total number of
instructions executed is 2000K and the rate of instructions execution is .03 ,.003 for exponential and rayleigh
growth pattern respectively as follows in [10]

() ()() ()()1

1 0

1 ex p
!

j
n i

i i

i i

i j

b E t
m t a p bE t

j

−

= =

  
  = − −
  

  
∑ ∑

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

We have estimated the parameters of proposed model(equation 8) using SPSS tool for two data sets.

Parameter estimates are shown intable [1-4].

Sample of bug reported data of My SQL for Python

Sample of bug reported data of SQuirreL SQL Client Sample

3.3. Data Analysis:
 Estimation results of different proposed model:

Table-1: Parameter Estimates of My-SQL Dataset (Rayleigh)

ID Summary Status Opened Assignee Submitter Resolution Priority

418713 Python 1.5.2 adds an L Closed 4/25/2001 Nobody nobody Wont Fix 5

419004 _mysql_timestamp_converter Closed 4/26/2001 Adustman nobody Fixed 5

424878 Date_or_None Closed 5/17/2001 Adustman nobody Fixed 5

440332 Need to #ifdef around things Closed 7/11/2001 Adustman ads Fixed 5

440327
Setup.py configuration for my

platform Closed 7/11/2001 Adustman gimbo
Wont Fix

5

442299
core-dump.

Python2.1,config_pymalloc Closed 7/18/2001 Adustman nobody
Fixed

5

445489
Execeptions don't follow DB-

API v2.0 Closed 7/28/2001 Adustman nobody
Fixed

5

464875 Limit bug in ZMySQLDA Closed 9/25/2001 Adustman nobody Wont Fix 5

464873 Limit bug Closed 9/25/2001 Nobody nobody Wont Fix 5

ID Summary Status Opened Assignee Submitter ResolutionPriority

467386
Remember state of tree when

refreshing Closed 10/3/2001 gmackness Colbell Fixed 5

467979 Cannot type sql undr JDK1.4 Closed 10/4/2001 Colbell Nobody Fixed 5

472539 wrong path separator Closed 10/18/2001 Colbell Nobody Fixed 5

474592
SQL Exception with Sybase ASE

12 Closed 10/24/2001 Colbell Diegodalcero Fixed 5

489985
Cannot 'Cancel' from a SQL

query Closed 12/6/2001 Colbell Gmackness Fixed 5

520500
Databased not displayed in

object browsr Closed 2/20/2002 Colbell Nobody Fixed 5

525621 SQL History Closed 3/4/2002 Colbell Dmishee Fixed 5

526656 Incorrect linefeed replacement Closed 3/6/2002 Colbell Tlarsen Fixed 5

526989skinLF and kunstoff not available Closed 3/7/2002 Colbell Nobody Fixed 5

Models A b p1 p2 p3 p4 p5 p6 q1 q2 q3 q4 q5 q6

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

Table-2: Parameter Estimates of My-SQL Dataset (Exponential)

Table-3: Parameter Estimates of Squirrel Dataset (Rayleigh)

Table-4:
Paramete

r
Estimates

SQuirrel Dataset (Exponential)

Model 1
155

.00
6

- - - - - - - - - - - -

Model 2 155 .10
9

.226 .774
-

- - - .91
7

.08
3

- - - -

Model 3 150 .16
0

.183 .709 .108 - - - .75
4

.15
7

.08
9

- - -

Model 4 155 .33
3

.205 .750 .044 .001 - - .74
7

.02
6

.22
7

.00
0

- -

Model 5 147 .25
6

.964 .025 .000 .007 .005 .05
2

.19
0

.46
7

.07
6

.21
5

Model 6 174 .03
3

.542 .013 .371 .000 .001 .07
3

.53
7

.05
3

.39
0

.00
7

.01
3

.00
0

Models A B p1 p2 p3 p4 p5 p6 q1 q2 q3 q4 q5 q6

Model
1**

- - - - - - - - - - - - -

Model 2 356 .00
7

.076 .924
-

 - - - .73
2

.26
8

- - - -

Model 3 207 .01
1

.378 .000 .622 - - - .42
5

.06
1

.00
0

- - -

Model 4 190 .73
4

.052 .896 .021 .032 - - .00
4

.01
7

.01
0

.96
8

- -

Model 5 453 .00
6

.474 .526 .000 .000 .000 - .10
5

.26
8

.00
0

.02
8

.59
9

Model 6 251 .01
1

.650 .000 .000 .343 .007 .00
0

.17
8

.00
0

.01
1

.71
4

.09
5

.00
2

Models A B p1 p2 p3 p4 p5 p6 q1 q2 q3 q4 q5 q6

Model 1
332

.00
4

- - - - - - - - - - - -

Model 2 313 .07
7

.188 .812

- - - .91
0

.09
0

- - - -

Model 3 282 .80
4

.084 .882 .035 - - - .94
3

.03
9

.01
9

- -

Model 4 309 .17
6

.921 .030 .038 .011 - - .04
8

.75
6

.05
0

.14
6

- -

Model 5 467 .03
2

.478 .000 .184 .338 .000 .27
4

.00
0

.31
6

.00
0

.41
0

Model 6 399 .01
4

.369 .575 .038 .000 .004 .01
5

.71
9

.28
1

.00
0

.00
0

.00
0

.00
0

Models A B p1 p2 p3 p4 p5 p6 q1 q2 q3 q4 q5 q6

Model
1**

- - - - - - - - - - - -

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

Here, 1p , 2p , 3p , 4p 5p , 6p are the proportion of different complexity of bugs and 1 2 3 4 5 6, , , , ,q q q q q q are

proportion of accession of different type of variables namely private, private and protected and public variables
respectively.

** Parameters are not estimated

3.4. Description of Tables:
Table 1 shows proportion of different complexity of bugs. Here,Model 2 estimates the presence of two types of
bugs mainly with proportion of 23% and 77%; Model 3 estimatesthe presence of three types of bugs with proportion
of 18%, 71% and 11%; Model 4 estimates the presence of two types ofbugs mainly with proportionof 21% and
75%; Model 5 estimates maximumbugs of Type 1 with proportion of96%; and Model 6 estimatesfour types of bugs
with different proportions. In this table q1...q6 shows proportion of accession of private, protected and public
variable.
 In Table 2, Model 2 estimates the presence of two types of bugs and mainly of Type 2;Model 3 estimates the
presence of mainly two types of bugs with proportion of 38% and 62%;Model 4 estimates the presence of four
types ofbugs with different proportion; Model 5 estimates maximum bugs of Type 1 and Type 4with proportion
of47% and 53%; finally,Model 6 estimates maximum bugs of Type 1 and Type 4 with proportion of 65% and 34%.
In Table 3, Model 2 estimates the presence of two types of bugs with proportion of19% and 81%; Model 3
estimates the presence of three types of bugs where maximum bugs are of Type 2; Model 4 estimates maximum
bugs of Type 1 with proportion of 92%;Model 5 estimates maximum bugs of Type 1 and Type 4 with proportion of
48% and 34%;and Model 6 estimates maximum bugs of Type 1 and Type 2 with proportionof 37% and 58%.
In Table 4, Model 2 estimates the presence of two types of bugs with proportion of 99% and 1%; Model 3 estimates
the presence of two types of bugsmainly with proportion of48% and47%; Model 4 estimates the presence of four
types ofbugs;Model 5 estimates maximum bugs of Type 2 with proportion of 81% and Model 6 estimatesmaximum
bugsof Type 1 and Type 3.

4. CONCLUSION:
Object oriented approach has eased the software development process and in making a clear understanding of the
requirements of the real world problems. In this paper, we proposed a generalized model that determines the
proportion of bug complexity present in the software. The prior knowledge of distribution of bugs of different
complexity will help project manager in allocation of testing efforts and tools. We have provided the numerical
results of combinations of up to six types of models. The component model of these combinations represents
different types of bugs which follows different typesof growth curves depending upon their complexity.The
knowledge about failure distribution and their complexity can also improve the testability of software. Testing effort
allocation can be made easy by knowing the failure distribution and complexity of faults, and this will ease the
process of revealing faults from the software. As a result, the testability of the software will be improved.

Model 2 473 .03
6

.015 .985
-

- - - .92
3

.07
7

 - - -

Model 3 382 .02
6

.049 .481 .470 - - - .18
5

.57
1

.24
4

- -

Model 4 361 .07
8

.050 .589 .223 .138 - - .12
2

.39
2

.09
2

.39
3

Model 5 442 .02
2

.041 .814 .000 .039 .107 - .07
8

.32
2

.16
7

.00
3

.42
9

Model 6 593 .00
9

.397 .000 .574 .018 .000 .01
0

.27
3

.18
9

.50
6

.00
0

.00
0

.03
2

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

This study can be further extended and applied on more data sets to increase confidence in the proposed models.In
future, I will try to develop software reliability growth model for object oriented system by incorporating imperfect
debugging and error generation.

6. REFERENCES

[1] Meyer, Bertrand (1988): Object-oriented Software Construction. Prentice- Hall, New York, NY, 1988, p.
59, 62.

[2] Binder RV: Testing object oriented software: A survey. Journal of software testing, Verification and
Reliability 31996;6(3/4):125-252

[3] IEEE 729-1983: Glossary of Software Engineering Terminology, September 23, 1982.
[4] Gacek Cristina and Arief Budi (2004):The Many meanings of Open Source, IEEE Software, Vol. 21,

issue 1, 2004, pp.34- 40.
[5] Ruben van Wendel de Joode and Mark de Bruijne(2006): The organization of open source communities:

Towards a Framework to Analyze the relationship between openness and reliability, Proceedings of
39thHawaiiInternational Conference on System Sciences, , 2006, pp.1-6.

[6] Mary Paul Li, Shaw, Herbsleb Jim ,Bonnie Ray, Santhanam P., Empirical Evaluation of Defect
Projection Models for Widely-deployed Production Software systems, in the proceedings of the 12th
International Symposiumon theproduction of Software Engineering (FSE-12), PP.263-272.

[7] Tamura Y. and Yamada S., Optimization analysis for Reliability Assessment based on stochastic
differential equation modeling for Open Source Software, International Journal of Systems Science, Vol.
40, No.4 , 2009, pp 429- 438.

[8] Zhou Ying and Davis Joseph (2005):Open Source Software Reliability Model: An empirical approach,
Proceedings of the 5th WOSSE, 2005, pp 1-6.

[9] Singh V.B. and P.K Kapur.(2009): Measuring Reliability Growth of Open Source Software, Accepted for
poster presentation in IBM-Indian Research Laboratory Collaborative Academia Research Exchange
held during October 26, 2009 at IBM India Research Lab, ISID Campus, Institutional Area, Vasant Kunj ,
New Delhi, India.

[10] .Kapur P.K, Min Xie and Younes Said (1994): Reliability Growth Model for Object Oriented Software System,
Software Testing, Reliability and Quality Assurance, , Dec.21-22 1994,. pp. 148 – 153

[11] Kapur P.K., Younes S. and Agarwala S. (1995) ‘Generalized Erlang Software Reliability Growth Model
with n types of bugs”, ASOR Bulletin,14,5-11.

[12] Kapur P.K., Bardhan A.K., and Kumar S. (2000) :On Categorization of Errors in a Software,Int. Journal
of Kapur Management and System, 16(1),37-38

[13] P.K., Bardhan A.K.; Shatnawi O.; (2002) Why Software Reliability Growth Modelling Should Define
Errors of Different Severity. Journal of the Indian Statistical Association, Vol. 40, 2, 119-142.

[14] Kapur P.K., Younes S and Grover P.S.; (1995), Software Reliability Growth Model with Errors of Different
Severity, Computer Science and Informatics (India) 25(3):51-65.

[15] Kapur P.K. Kumar Archana ,Yadav Kalpana and Khatri Sunil(2007) :Software Reliability Growth
Modelling for Errors of Different Severity using Change Point, International Journal of Quality ,Reliability
and Safety engineering Vol.14,No.4,pp.311-326.

[16] P.K Kapur. Kumar Archana Singh V.B. and Nailana F.K.(2007):On Modeling Software Reliability Growth
Phenomanon for Errors of Different Severity,In the Proceedings of National Conference on Computing
for Nation Development, BhartiyaVidyapith’s Institute of Computer Applicationsand Management, New
Delhi, pp.279-284, held during23rd-24 th February.

[17] P.K., Kapur Kumar Archana , Mittal Rubina and Gupta Anu (2005):Flexible Software Reliability Growth
Model Defining Errors of Different Severity, Reliability, Safety and Hazard, pp. 190-197 Narosa
Publishing New Delhi.

[18] Singh V.B., Singh O. P., Kumar.Ravi,Kapur P.K.(2010) A Generalized Software Reliability Model for
Open Source Software published in proceedings of 2nd International Conference on Reliability Safety

I n t e r n a t i o n a l J o u r n a l o f E n t e r p r i s e C o m p u t i n g a n d B u s i n e s s S y s t e m s

I S S N (O N L I N E) : 2 2 3 0 - 8 8 4 9 V o l u m e 2 I s s u e 1 J a n u a r y 2 0 1 2

and Hazard, organized by Bhabha Atomic Research Center, Mumbai held during December, 14-16,
2010, published by IEEE, pp.479-484

[19] Singh V.B., Khatri Sujata and Kapur P.K.(2010): A Reliability Growth Model for Object Oriented
Software Developed Under Concurrent Distributed Development Environment, published in
proceedings of 2nd International Conference on Reliability Safety And Hazard, organized by
Bhabha Atomic Research Center, Mumbai held during December, 14-16, 2010, Pp 479-
484,Published by IEEE.

[20] Kapur P.K., Garg R.B. and Kumar S. (1999) “Contributions to Hardware and Software
Reliability”, World Scientific, Singapore.

[21] K. Pillai and V.S.S. Nair, A Model for Software Development effort and Cost Estimation, IEEE
Transactions on Software Engineering; vol. 23(8), 1997, pp. 485-497.

[22] Goel, AL and Okumoto K. (1979) :Time dependent error detection rate model for software
reliability and other performance Measures, IEEETransactions on Reliability Vol.R-28 (3)
pp.206-211.

[23] S. Yamada, M. Ohba and S. Osaki, S-shaped Software Reliability Growth Models and their
Applications, IEEE Transactions on Reliability R-33, 1984, PP. 169-175.

[24] Singh V.B., Kapur P.K. and Abhishek Tandon “Measuring Reliability Growth of Software by
Considering Fault Dependency, Debugging Time Lag Functions and Irregular Fluctuation”
published in May issue Vol. 25, No. 3 ACM SIGSOFT Software Engineering note

