
International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

COMPOSABILITY OF COMPONENTS IN COMPONENT BASED

SOFTWARE DEVELOPMENT (CBD)

H. P. S. Dhami

AP(CSE)-Dean Acedemics, RBIENT, Hoshiarpur

Abstract

Component-based Software Engineering (CBSE) (also known as Component-based Development

(CBD)) is a branch of software engineering which emphasizes the separation of concerns in

respect of the wide-ranging functionality available throughout a given software system. Software

components vary from normal software parts in the sense that they own composition

potentialities, named composability. Composability is the capability to select and assemble

simulation components in various combinations into simulation systems to satisfy specific user

requirements. Lack of proper composition of software components is a main concern between

components users & developers. The defining characteristic of composability is the ability to

combine and recombine components into different simulation systems for different purposes.

Present component technologies are not prowling much support for the non functional properties

of components that generally become a cause of poor composability. If a component is enable to

compose in various environments, and then there is a need to add some programmability with the

components. A proposal is to use light weight components such that the overheads (that are not

required in a particular application) do not get transported with the body of component. Based on

this suggestion, an attempt is made to propose the model of “Template Component” with

“Component Generator” that will generate components according to the requirements of the

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

specific application. This idea calls for concern about the composability since beginning that is at

the time of generation of the component.

Keyword: CBSE, CBD, HLA

1. Problem Decomposition

In order to optimize the design, construction and maintenance process of software, we need to

apply the divide-and-conquer principle by decomposing our systems and problems into smaller

parts, which can be decomposed again, recursively. This decomposition process must continue

until a level is reached where each building block (a) can be understood and constructed

effectively, and (b) deals only with a single concern (we will discuss the motivation for this later).

The word 'problem' in 'problem decomposition' is not restricted to end-user requirements, but

applies to anything from given requirements to the implementation of a simple task or algorithm.

The decomposition process is a way to analyze and manage complexity –in other words, it is a

problem solving technique– but at the same time, it may provide a basis for system construction

and maintenance. This is because it has same result as that of the decomposition process –as it

applies to the design phase– determines the structure and the building blocks for constructing the

system1.

We make the following important assumptions about software development:

• The method of decomposition determines what the building blocks are and how they are

related.

• We can always identify useful and appropriate abstractions and structures for a particular

application by analyzing the related problem domain.

• A software development method should be structure-preserving: this means essentially

1
 This assumes that the same modeling paradigm is used in all development phases.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

that traceability between the 'input'-artifacts (e.g. requirements) and 'output'-artifacts (esp. code) is

such that an iterative rather than a waterfall-style development process is supported.

Concluding, the decomposition process should take domain knowledge as an input, and result in

a structured set of building blocks that offer a clear mapping to the structure and abstractions of

the problem domain.

2. Introduction

Composability is an increasingly important issue in system development. The main objective of

Component-based Development (CBD) or CBSE is to reduce time to market & cost, and on the

other hand increase quality of software system. CBSE is able to achieve it by developing software

components once & use it many times. In CBSE, components are developed autonomously from

software development. So, a process of component evaluation, adaptation & composition must be

performed before using components into component-based software systems. At the time of

development of the component we don’t have a clear idea about the design structure of the

software system, where the component has to be deployed. A component is responsible to

provide some functionality to a system where it is going to be incorporated (plugged). Sometimes

it might happen that a component is incorporated easily into the system but fails to perform its

desired operation & system’s performance may get affected. This problem generally arises

because components are not properly composed into the system. Components [1], whose

interfaces are syntactically compatible, exhibit undesirable behavior when used together. The

problem of proper composition of software components is an important issue between component

developers & components users. Component composition goes one step further than integration

in that the result of component composition is a software assembly that can be used as a part of a

larger composition. The problem of reasoning about how well components will work together is

the most vital problem faced by component based system developers today. Components alone

are not responsible for composition failure; it also depend on other factors like nature of the

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

connectors, architecture of the system, run time behavior, composition rules etc. A standard

architecture[6] will require, on which application can be built & deployed. The architecture should

provide appropriate level of functionalities and should also help to automate the creation of

standard ‘plumbing’ to plug the application into itself. A component may be obtained from runtime

environment & integrated in the application. On the other hand a component may be obtained

from a repository serving as a supplier from some other organization.

The capability of component may improve if we are able to predict the behavior of a component’s

behavior in a specific application under specific conditions. The components interface, many

times, doesn’t have sufficient information for good composition. So, one idea may be to give all

required functional & non-functional information with the interface. But this will make components

interface heavy & inadequate. A set of bond can also be associated with a component that will

give information about input & output parameters, pre & post conditions etc. But this may increase

documentation overhead. A proposal is to use light weight components such that the overheads

(that are not required in a particular application) do not get transported with the body of

component. Based on this suggestion, an attempt is made to propose the model of “Template

Component” design that will help to generate the component according to the requirements of the

specific application & this approach is discussed in this paper.

Some approaches to the composition of software have been proposed in literature J. A. Stafford

and Kurt Wallanu [1] have described problem of composition due to inadequate interfaces. As per

Barbier[2], the Composability of a software component is defined as “Whole-Part Theory

Approach”. The foundation of this approach is encapsulation of sub-components by component,

emergent and resultant properties for component with regards to their sub component & finally

state & life time dependencies. Gordon S Novak Jr [3] explained the method of company reusable

software components through views.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

In Gordon S Novak Jr.[4] research, the correct research topics of Composability have been

discussed & it also points out some problems of composability. Composition anomalies have been

discussed in Lodewijk Bergmans’ [5]. Orcas Neierstrase & T. D. Meijler [7] addressed some

issues of software composition as lack of suitable framework, Composition model and

Compositional language. Kikel D Pretty, Eric W Weisel [8] and Jeffrey Voes [9] focus on

composition problem for embedded systems.

3. Composability

Software components [2] vary from normal software parts in the sense that they own composition

potentialities, commonly named Composability or Compositionality. A highly computable system

provides recombinant components that can be selected & assembled in various combinations to

satisfy specific user requirements. Many definition of Composability are stated here. While, Carine

Lucas, Patric Steyaert and Kim Mens [4] composability is a much desired quality for software

artifacts, there is no consensus whatsoever on what composability really is, not how it can be

achieved.

Composability means “The ease with which a component can be integrated & perform the

functionalities as desired by the specific application”.

It is the ability to rapidly configure, initialize, and test an exercise by logically assembling a

simulation from a pool of reusable components [10].

Composability of a component deals with its plug-ability with other components & its dynamic run

time behavior in the application. The essential attributes that make a component composable are

self containment and statelessness.

The composition between software components depends on [1]:

• The nature of components.

• The nature of connector (Protocols & data models),

• The architecture of the assemblies (Constraints on interaction), and

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

• Runtime construction process.

Two types of composability can be defined: Syntactic & Semantic [8]. Semantic composability is

the actual implementation of composability; it required that the composable components be

constructed so that their implementation details, such as parameter passing mechanism, external

data access, and trimming assumptions are compatible for all of the different configurations that

might be composed. The question in syntactic composability is a question of whether components

can be connected. In contrast, semantic composability is a question of whether the models that

make up the composed simulation system can be meaningfully composed.

3.1 Levels of Composability

As the term “composability” in the literature is compared it is apparent there is one way in which

the meanings often differ. It differs on the question of what is being composed and what is formed

by the composition. Various different answers can be found in the literature; they will be referred

to as levels of composability. Nine levels of composability are defined here. These levels have

been drawn from various sources, some of which explicitly or implicitly include several of the

levels defined here in composability (e.g., [13], [21]). Composability levels from different sources

have been combined. Those listed here have different meanings and implications, but there may

be some overlap in component and scale between them.

1. Application (also called event-level). Applications such as real systems, simulations,

networks, communications equipment and auxiliary software components are composed into

simulation events, exercises or experiments. For this to be a level of composability, rather

than simply integration, the composition must be done in way that allows combining and

recombining the applications into different systems and events. This level of composability is

also called “event-level” [11].

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

2. Federate(also called federation-level). Federates are composed into persistent federations. A

federation is persistent if is reused for a number of different purposes (such as events,

exercises, or experiments), though possibly with some changes to the set of federates that

have been composed. The composition may be supported by an interoperability protocol,

such as DIS (Distributed Interactive Simulation), ALSP (Aggregrate Level Simulation

Protocol), and HLA (High Level Architecture). Examples of this level of composability include

the Joint Training Confederation and the Combat Trauma Patient Simulation [12]. This level

of composability has also been called “federation-level” [11]. The terms “federate” and

“federation” have specific HLA meanings; here they are being used with more generic

meanings analogous to their HLA meanings to denote simulations linked together, but not

necessarily with HLA.

3. Package. The Pre-assembled packages comprising sets of models that form a consistent

subset of the battle space are composed [10].

4. Parameter. Parameters are used to configure pre-existing simulations [10].

5. Module. Software modules are composed into software executables. The executables may

be federates in a federation or standalone simulation systems. The OneSAF family of

software products is expected to have this level of composability [14] [15] [16].

6. Model (also called object-level, component). Various models of smaller-scale processes or

objects (means simulated real-world objects) are composed into composite models of larger-

scale processes or objects. Models of physical processes, such as rainfall and wind, may be

composed into composite models of larger-scale physical phenomena, such as weather. The

composite models may be implemented as modules or federates. This level of composability

has also been called “object-level” [11], “component” [10], and “reconfigurable models” [17].

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

7. Data. Data sets are composed into databases and these data sets may be initially distinct

because they describe different entities, they are from different sources, or they represent

different aspects of some phenomena. Different data sets were composed to represent

electronic warfare in DIS [18]. SEDRIS is intended to support such composability for natural

environment databases.

8. Entity (also called federate-level). Entities are composed into groupings. This level of

composition may be hierarchical, with several layers of groupings composed into higher level

groupings. This level of composition is typically done with data, rather than with software, as

in ModSAF and WARSIM. This level of composition has also been called “federate-level” [11].

9. Behavior. Low-level atomic behaviors are composed into high-level composite behaviors,

which are to be executed by autonomous simulation entities in a computer generated forces

system or constructive simulation. The behaviors may be expressed in a variety of forms.

Examples include hierarchically organized finite state machines as used in ModSAF and its

variants [19] and process flow diagrams [20].

3. Reason of Poor Composability

The following reason may be the cause of poor composability:

1. Defective software components [9]

2. Lack of suitable architecture keeping composition in mind.

3. Problem with assumptions (contractual requirements) between components [9].

4. Inputs received that are outside the range of any profile that the original designer

anticipated [9].

5. Dependency between components is not actually foreseen & precisely specified [2].

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

Table 1 summarizes these composability levels.

Components Composition Example(s)

Application Event Unified Endeavor

Federate Federation Joint Training Confederation, Combat Trauma Patient

Simulation
Package Simulation JSIMS

Parameter Simulation JSIMS

Module Executable OneSAF

Model Composite model ModSAF, OneSAF

Data Database Electronic warfare in DIS, SEDRIS

Entities Military unit ModSAF, WARSIM

Behavior Composite behavior Finite state machines, Process flow diagrams

Table 1 Levels of Composability.

4. Template Component

When a component is plugged into a subsystem, then its subsystem is expecting some

functionality from the component and the component also expects some support from the

subsystem. If any one of the above two fails to fulfill the responsibility, the component would not

be able to provide proper functionality to the subsystem. [Figure. 1]

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

Fig. 1 Responsibility dependency in a Component Based System.

A component can only be accessed through its interface. Such an interface should contain all

necessary information about component operations and about the context in which a component

will be deployed. In general purpose component technologies, the interface are usually

implemented as object interface supporting polymorphism by late binding, while late binding allow

connecting of components that are completely unaware of each other beside the connecting

interface, this flexibility along with a performance penalty and increases risk for system failure.

Also the predictability of the system’s performance or other properties decrease since the

composition of the components occurs at runtime. To make a component properly composable

into a subsystem, some extra information will be needed like input and output parameter, possible

error codes, memory requirements etc. Lack of these information sometimes create problems in

composition of components. One way is to add more information (function & non-function

requirements) with the interface of a component. But this will make components interface heavy

and inadequate. Another alternative is to add all required conditions within the internal logic of a

component. These requirements will be different for different environments, and only few of the

Subsystem

Resource Provider

Component

Subsystems

 Own

Responsibility

System’s Own

Responsibility

Component Subsystem

Responsibility

 Component’s

Own

Responsibility

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

conditions will be used at a time. Such

components will take more memory at

runtime because the whole components

will add to the program whether we

may need some functionality. If a

component is enable to compose in various

environments, and then there is a need

to add some programmability with

the components. Components should

be developed to be delivered in such a

manner so that problem of integration and composition do not arise and overheads (those are not

required in a specific application) do not get transported with the body of the component. The

composability issue must not be an after thought as it is normally not possible to modify a

component once it has been designed and implemented.

One way is to use light weight components that express the internal logic in a base class and use

a common generator function that will generate the component according to the variations or

modifications required by the specific application.

The basic idea is – i) To design the component with attributes and functionalities that will always

be essential in its any deployment.

ii) It should have scope for addition of, or modification in, other functionalities as per requirements

of specific applications.

Thus we have proposed here the idea of “Template Component” (fig 2) that can be developed in

two steps.

Domain Specification

Generator

Function

 Template

Fig 2. Proposed

components

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

The first one, we names it as “Generic Component”, contain the basic functionality of a

component, with all general features.

In the second step, there will be a “Component Generator” function that will generate the

component according to the need

of the specific application. Once

the template component is

defined, the component generator

will automatically call the template

component and generate that

component with required

functionalities. The main

motivation of “Template

Component” is to reduce the size

of components and produce light

weight composable components

that will take less memory and

execute time. Template Components will provide all necessary information for composition, by

separating actual implementation details at run-time. A client of a template component needs to

get the work done without having to worry about which algorithm will be required to do it under

varying circumstances. It will provide a greater degree of flexibility, generality and efficiency.

Components generated with their method would be easily composable into a subsystem.

In our proposal “Template Component” model (fig 3.), there will be on ADI (Application

Development Interface), a set of template components along with a common “Component

Generator” function in a local repository. Here Components will be Template Components

analogous to templates in the .NET Framework, which will contain all essential features. If a

designer needs a component (with some Constraints) then he will request to ADI, ADI then send

Application

Development

Interface

Design

Component

Generator

Output

Component

Parser

Fig 3. A template component development environment

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

this request to component generator, The component generator will accept the required

specification and sent it to Component Descriptor. A Component Descriptor keeps record about

all Template Components along with its specifications; a routine will then match the specification

and pick up required Component.

Component Generator then generates the Component according to the specific user

requirements. Here Component Generator will act like a template processor that will generate the

Components according to the application need. Such a component would be pluggable and

Composable in applications and will perform desired functionality.

For example, if a Component has to be deployed in two different Component based software

system, one for stand alone environment and other for client-server environment (or for Mobile

Computing Environment), then it night be possible that both environments have different

requirement at run-time but the basic logic would be same. Our proposed Component Generator

function will generate the Component according to the need of the specific Component based

application environment.

5. Advantages

• Template Components takes less memory of run-time.

• Template Components would promote modularity & flexibility.

• Such Components would be more suitable for embedded system.

6. How to Enhance Composability

Composability of Component should increase in such a manner that increase (at least not

decrease) the quality of a software in which component is going to be deployed. Following points

may be useful to enhance the Composability of a Component.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

i.Components should be developed as Black Box.

ii.Communication between the two components should be limited.

iii.Components interface should be smaller.

iv.Components should be properly combined into assembly according to its functionality

neither unnecessary dependency may reduce comparability.

v.A Component needed some contextual requirement, in which it is going to be composed.

This information should be kept as minimum as possible.

7. Conclusion

The aim of this research work is to point at the possibility of applying this approach for developing

of light components that would be suitable for composition. Component based Software

Engineering will be as successful as comparable the components would be. When CBSE would

be mature enough to provide components “On Demand” then only the proper culture of software

development with Component would come into being.

We propose here a model that addresses the question, though in limited sense. The Component

generation model would be able to generate some Component only if the corresponding template

is available and that two of the automatic modification of the template to generate the

Components is possible. Another possibility is to make the development in customization of a

canonical component rather than automatic generation.

8. References

1. J A Stafford and Kurt Wallnau, “Component Composition and Integration”, pp 187-192, in

“Building Reliable Component Based Systems” by Ivica Crnkovic, Magnus Larson, Artech

House publishers ISBN i-58053-327-2.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

2. Barbier F., “Composability for Software Components –An Approach Based on the Whole

Part Theory”, Eighth IEEE International Conference on Engineering of Complex Computer

Systems (ICECCS 02) page 101-106, 2002.

3. Gordon S Novak Jr., “Composing Reusable Software Components Through Views”, Proc.

9th Knowledge Based Software Engineering Conference (KBSE-94) pp 39-47, Montercy

CA, Sept 1994, IEEE Computer Society Press.

4. Carine Lucas, Patric Steyaert, Kim Mens, “Research Topics in Composability”, Proc. Of

the CTOO-96 Workshop at ECOOP presented at the ECOOP 96 Workshop on

Composability issue in Object Oriented, published in Special Issues in Object Oriented

Programming: Workshop Reader of the 10th Europiean Conference on Object Oriented

Programming, pp 81-86, 1996.

5. Lodewijk Bergmans, Bedir Tekinerdogan, M. Glandrup and Mehmet Aksit, “On Composing

Separate Concerns, Composability and Composition Anomolies”, ACM OOPSLA

Workshop on Advanced Separation Concerns, USA 2000.

6. Subrahmanyam Allamaraju et al, “Professional Java Server Programming” pp-10 61, J2EE

1.3 Edition, Apress Publisher.

7. Oscar Neierstrasz, Theo Dirk Meijler, “Research Direction in Software Composition”, ACM

Computing Surveys (CSUR) Volume 27, Issue 2 (June 1995) page 262-264, ISSN: 0360-

0300.

8. Kikel D Pretty, Eric W Weisel, “A Formal Basis for A Theory of Semantic Composability”,

In Proc. Of the Spring 2003 Simulation Interoperability Workshop, 2003, 035-SIW-054.

9. Jeffrey Voes, “Predicting System Trustworthiness”, pp 201-204, in “Building Reliable

Component Based Systems” by Ivica Crnkovic, Magnus.

10. JSIMS Composability Task Force, “JSIMS Composability Task Force Final Report”,

September 30 1997.

11. G. M. Post, “J9 Composability Summary Comments”, Electronic mail, June 12 2002.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

12. M. D. Petty and P. S. Windyga, “A High Level Architecture-based Medical Simulation”,

SIMULATION, Vol. 73, No. 5, November 1999, pp. 279-285.

13. M. Biddle and C. Perry, “An Architecture for Composable Interoperability”, Proceedings of

the Fall 2000 Simulation Interoperability Workshop, Proceedings of the Fall 2000

Simulation Interoperability Workshop, Orlando FL, September 17-22 2000, 03S-SIW-073.

14. United States Army, One Semi-Automated Forces Operational Requirements Document,

Version 1.1, Online document at URL http://www-

leav.army.mil/nsc/stow/saf/onesaf/onesaf.htm/, August 21 1998.

15. A. J. Courtemanche and R. B. Burch, “Using and Developing Object Frameworks to

Achieve a Composable CGF Architecture”, Proceedings of the Ninth Conference on

Computer Generated Forces and Behavioral Representation, Orlando FL, May 16-18

2000, pp. 49-62.

16. A. J. Courtemanche and R. L. Wittman, “OneSAF: A Product Line Approach for a Next-

Generation CGF”, Proceedings of the Eleventh Conference on Computer-Generated

Forces and Behavior Representation, Orlando FL, May 7-9 2002, pp. 349-361.

17. A. Diaz-Calderon, C. J. J. Paredis, and P. K. Khosla, “Organization and Selection of

Reconfigurable Models”, Proceedings of the 2000 Winter Simulation Conference, Orlando

FL, December 10-13 2000, pp. 386-393.

18. D. D. Wood and M. D. Petty, “Electronic warfare and Distributed Interactive Simulation”, in

T. L. Clarke (Editor), Distributed Interactive Simulation Systems for Simulation and

Training in the Aerospace Environment, SPIE Critical Reviews of Optical Science and

Technology, Vol. CR58, SPIE Press, Bellingham WA, 1995, pp. 179-194.

19. R. B. Calder, J. E. Smith, A. J. Courtemanche, J. M. F. Mar, and A. Z. Ceranowicz,

“ModSAF Behavior Simulation and Control”, Procedings of the Third Conference on

Computer Generated Forces and Behavioral Representation, Orlando FL, March 17-19

1993, pp. 347-356.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

20. S. D. Peters, N. D. LaVine, L. Napravnik, and D. M. Lyons, “Composable Behaviors in an

Entity Based Simulation”, Proceedings of the Spring 2002 Simulation Interoperability

Workshop, Orlando FL, March 10-15 2002.

21. M. D. Petty and Eric W. Weisel, Virginia Modeling, Analysis and Simulation Center Old

Dominion University, Norfolk VA 23529, “A Composability Lexicon”, Unpublished

manuscript, July 4 2002.

