
International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

WEB APPLICATION VULNERABILITY DETECTION USING

DYNAMIC ANALYSIS

WITH PENETERATION TESTING

Sreenivasa Rao B 1

Dept. of Computer Science & Engineering

CMJ University, Shillong, India

Kumar N 2

Dept. of Computer Science & Engineering

ACE college of Engineering and Management

Agra, India

Abstract: The number of reported web application vulnerabilities is increasing

dramatically. The most of the vulnerabilities result from improper input validation. This

paper presents extensions to the Tainted Mode Model (TMM) which allows inter module

vulnerabilities detection. Besides, this paper presents a new approach to vulnerability

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

analysis which incorporates advantages of penetration testing and dynamic analysis.

This approach effectively utilizes the extended Tainted Mode Model.

Web Application Penetration Testing (WAPT) can be defined as a legally authorized,

non-functional assessment of a given web application, carried out to identify

loopholes or weaknesses, or known as vulnerabilities. These vulnerabilities,

exploited by a malicious user (attacker/hacker), may affect the confidentiality,

integrity and availability (CIA) of the web application and/or information distributed

by it.

Keywords: Web Application Security, Vulnerability Analysis, Penetration Testing,

Dynamic Analysis, Taint Analysis, Vulnerability Detection.

1. INTRODUCTION

Security vulnerabilities in web applications may result in stealing of confidential data,

breaking of data integrity or affect web application availability. Thus the task of securing

web applications is one of the most urgent for now. The most common way of securing

web applications is searching and eliminating vulnerabilities therein. Examples of

another ways of securing web application include safe development, implementing

Intrusion Detection Systems (IDS) and/or protection systems, and web application

firewalls. According to OWASP (open web application security project), the most efficient

way of finding security vulnerabilities in web applications is manual code review. This

technique is very time-consuming, requires expert skills, and is prone to overlooked

errors. Therefore, we (as a security group) actively develop automated approaches to

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

finding security vulnerabilities. These approaches can be divided into two wide

categories: black-box and white-box testing.

The first approach is based on web application analysis from the user side, assuming

that source code of an application is not available. The idea is to submit various

malicious patterns (for example SQL injection or cross-site scripting attacks) into web

application forms and to analyze its output thereafter. If any application errors are

observed an assumption of possible vulnerability is made. This approach does not give

guarantee neither accuracy nor completeness of the obtained results. The second

approach is based on web application analysis from the server side, with assumption

that source code of the application is available. In this case dynamic or static analysis

techniques can be applied.

The most common model of input validation vulnerabilities is the Tainted Mode model.

This model was implemented both by means of static or dynamic analysis.

Another approach is input validation vulnerabilities is to model syntactic structure for

sensitive operations arguments. The idea behind this is that the web application is

susceptible to an injection attack, if syntactic structure for sensitive operation arguments

depends on the user input. This approach was implemented by means of string analysis

in static and it was applied to detect SQLI and XSS vulnerabilities. After all, this

approach was implemented to detect injection attacks at runtime.

One of the main drawbacks of dynamic analysis is that it is performed on executed paths

and does not give any guarantee about paths not covered during a given execution.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

However, dynamic analysis having access to internals of web application execution

process has the potential of being more precise.

In this paper we focus on the most common model of input validation vulnerabilities. The

contributions of this paper are the following:

• Improve classical Tainted Mode Model so that inter-module data flows could be

checked.

• We introduce a new approach to automatic penetration testing by leveraging it with

information obtained from dynamic analysis. Thus:

- More accuracy and precision is achieved due to widened scope of web

application view (database scheme and contents, intra-module data flows);

- Input validation routines can be tested for correctness.

II. TAINTED MODE MODEL (TMM)

Dynamic and static analysis uses Tainted Mode model for finding security vulnerabilities

that cause improper input validation.

According to, following assumptions were made within Tainted Mode Model:

1. All data received from the client via HTTP-requests is untrustworthy (or tainted).

2. All data being local to the web application is trustworthy (or untainted).

3. Any untrustworthy data can be made trustworthy by special kinds of processing,

named sanitization.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

With these assumptions made, security vulnerability is defined as a violation of any of

the following rules:

1. Untrustworthy (tainted) data should not be used in construction of HTTP responses.

This prevents cross site scripting attacks.

2. Untrustworthy (tainted) data should not be saved to local storages. This prevents

possible construction of HTTP responses from these sources in future.

3. Untrustworthy (tainted) data should not be used in system calls and in construction of

commands to external services such as database, mail, LDAP, etc. This prevents most

of injection attacks.

4. Untrustworthy (tainted) data should not be used in construction of commands that

would be passed as input to interpreter. This prevents script code injection attacks.

III. DYNAMIC ANALYSIS

Dynamic analysis is the testing and evaluation of a program by executing data in real-

time. The objective is to find security errors in a program while it is running. Dynamic

analysis empowers to identify and remediate security issues in their running web

applications before hackers can exploit them. Dynamic analysis inspects applications the

same way a hacker would attack them – providing the most accurate and actionable

vulnerability detection available.

A. Dynamic Analysis Testing

A Dynamic Analysis test communicates with a web application through the web front-end

in order to identify potential security vulnerabilities and architectural weaknesses in the

web application. Unlike source code scanners, a dynamic analysis program doesn't have

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

access to the source code and therefore detects vulnerabilities by actually performing

attacks.

A Dynamic Analysis can facilitate the automated detection of security vulnerabilities

within a web application. A Dynamic Analysis test is often required to comply with

various regulatory requirements. Dynamic Analysis can look for a wide variety of

vulnerabilities, including:

- Input/ Output validation: (Cross-site scripting, SQL Injection, etc.)

- Specific application problems

- Server configuration mistakes/errors/ version

B. Input Validation and Sanitization

Web applications typically work by first reading some input from the environment (either

provided directly by a user or by another program), then processing this data, and finally

outputting the results. As stated, the program locations where input enters the

application are referred to as sources. The locations where this input is used are called

sinks. Of course, sources often take data directly from potentially malicious users, and

the application can make little (or no) assumptions about the values that are supplied.

Unfortunately, many types of sinks cannot process arbitrary values, and security

problems may arise when specially crafted input is passed to these sinks. We refer to

these sinks as sensitive fields.

An example of a sensitive sink is a SQL function that accesses the database. When a

malicious user is able to supply unrestricted input to this function, this might be able to

modify the contents of the database in unintended ways or extract private information

that is not supposed to access. This security problem is usually referred to as SQL

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

injection vulnerability. Another example of a sensitive sink is a function that sends some

data back to the user. In this case, an attacker could leverage the possibility to send

arbitrary data to a user to inject malicious JavaScript code, which is later executed by

the browser that consumes the output. This problem is commonly known as XSS

vulnerability.

To avoid security problems, an application has to ensure that all sensitive sinks receive

arguments that are well formed, according to some specification that depends on the

concrete type of the sink. Because input from potentially malicious users can assume

arbitrary values, the program has to properly validate this input. Therefore, the

application checks the input for values that violate the specification. When such invalid

values are found, a programmer has two options. The first option is to abort further

processing: the application stops to handle the request and returns an error code to

signal incorrect input. The second option is to transform the input value such that the

altered value conforms to the input specification and no longer poses a security threat

when passed to a sensitive sink. We denote the process of transforming the input to a

representation that is no longer dangerous as sanitization. Typically, sanitization

involves the removal of (meta)-characters that have a special meaning in the context of

the sink, escaping these characters, or truncating the length of the input.

IV. PENTETERATION TESTING

A penetration test, occasionally called as pentest, is a method of evaluating the security

of a computer system or network by simulating an attack from malicious outsiders (who

do not have an authorized means of accessing the organization's systems) and

malicious insiders (who have some level of authorized access). The process involves an

active analysis of the system for any potential vulnerabilities that could result from poor

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

or improper system configuration, either known and unknown hardware or software

flaws, or operational weaknesses in process or technical countermeasures. This

analysis is carried out from the position of a potential attacker and can involve active

exploitation of security vulnerabilities.

Penetration testing approach is based on simulation of attacks against web applications.

Currently, penetration testing is implemented as black box testing.

A vulnerability assessment simply identifies and reports noted vulnerabilities, whereas a

penetration test attempts to exploit the vulnerabilities to determine whether unauthorized

access or other malicious activity is possible. Penetration testing typically includes

application security testing as well as controls and processes around the applications.

Figure 1: Visualization of Vulnerabilities in the application

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

The above diagram is useful to provide a visual perspective of how the assets in the

organization are linked to risk. The left circle represents the universe of threats

facing the organization. The right circle represents the vulnerabilities that have to be

managed by virtue of the organizations infrastructure and network architecture

configuration. There may only be a fraction of threats in the universe that present

risk to the organization—as depicted by the intersection in this Venn diagram—and

this is the set of threats in the local universe that we must manage.

Penetration tests are valuable for several reasons:

1. Determining the feasibility of a particular set of attack vectors.

2. Identifying higher-risk vulnerabilities that result from a combination of lower-risk

vulnerabilities exploited in a particular sequence.

3. Identifying vulnerabilities that may be difficult or impossible to detect with automated

network or application vulnerability scanning software.

4. Assessing the magnitude of potential business and operational impacts of successful

attacks.

5. Testing the ability of network defenders to successfully detect and respond to the

attacks.

6. Providing evidence to support increased investments in security personnel and

technology.

A. Penetration Testing Methodology

Once the threats and vulnerabilities have been evaluated, design the penetration testing

to address the risks identified throughout the environment.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

The penetration testing should be appropriate for the complexity and size of an

organization. All locations of sensitive data, all key applications that store, process, or

transmit such data, all key network connections, and all key access points should be

included. The penetration testing should attempt to exploit security vulnerabilities and

weaknesses throughout the environment, attempting to penetrate both at the network

level and key applications. The goal of penetration testing is to determine if unauthorized

access to key systems and files can be achieved. If access is achieved, the vulnerability

should be corrected and the penetration testing re-performed until the test is clean and

no longer allows unauthorized access or other malicious activity.

B. Penetration Test Process

The Penetrator performs information discovery via a wide range of techniques that

is, databases, scan utilities and more in order to gain as much information about the

target system as possible. These discoveries often reveal sensitive information that

can be used to perform specific attacks on a given machine.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

Figure 2: Penetration Testing Process

Vulnerability Identification: The vulnerability identification step is a very important

phase in penetration testing. This allows the user to determine the weaknesses of

the target system and where to launch the attacks.

Exploitation and Launching of Attacks: After the vulnerabilities are identified on the

target system, it is then possible to launch the right exploits. The goal of launching

exploits is to gain full access of the target system.

Denial of Service: A DOS (Denial of Service) test can be performed to test the

stability of production systems in order to show if they can be crashed or not. When

performing a penetration test of a preproduction system, it is important to test its

stability and how easily can it be crashed. By doing this, its stability will be ensured

once it is deployed into a real environment. It is important to perform DOS testing to

ensure the safeness of certain systems. If an attacker takes down your system

during busy or peak hours, both you and your customer can incur a significant

financial loss.

Reporting: After the completion of the penetration test, it is important to get user-

customized reporting suites for a technical and/or management overview. This

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

includes the executive summary, detailed recommendations to solve the identified

vulnerabilities, and official security ID numbers for the vulnerabilities. The reports

come in different formats such as html, pdf, and xml. Furthermore, all the reports are

open to be modified as of the user’s choice.

C. Managing the risks associated with Pen Test

Some of the key risks include the following while doing the penetration testing:

- The penetration test team may fail to identify significant vulnerabilities;

- Misunderstandings and miscommunications may result in the test objectives not

being achieved;

- Testing activities may inadvertently trigger events or responses that may not

have been anticipated or planned for (such as notifying law enforcement

authorities);

- Sensitive security information may be disclosed, increasing the risk of the

organization being vulnerable to external attacks.

Penetration testing is the most commonly applied mechanism used to gauge software

security, but it’s also the most commonly misapplied mechanism as well. By applying

penetration testing at the unit and system level, driving test creation from risk analysis,

and incorporating the results back into an organization’s SDLC, an organization can

avoid many common pitfalls. As a measurement tool, penetration testing is most

powerful when fully integrated into the development process in such a way that findings

can help improve design, implementation, and deployment practices.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

Figure 3: The software development life cycle (SDLC) with pen testing

V. CONCLUSION

This paper present an enhanced Tainted Mode Model that incorporates inter module

data flows. We also introduced a new approach to automatic penetration testing by

leveraging it with knowledge from dynamic analysis.

Number of reported web applications vulnerabilities is increasing dramatically. Most of

them result from improper or none input validation by the web application. Most existing

approaches are based on the Tainted Mode vulnerability model which cannot handle

inter-module vulnerabilities.

Penetration testing is essential given the context of high operational risk in the financial

services industry. Web-based and internal applications should be fully tested to ensure

they do not provide an avenue of entry for attackers. Vulnerability management should

be considered a priority given the sophisticated malware targeting client PCs inside the

organization. Wireless vulnerabilities also add to the attack surface that can be

exploited.

Penetration testing is the only legitimate means to identify residual risk that remains after

code has been tested and operational and other threats have been minimized. To make

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

the most of penetration testing it is necessary to prioritize the effort. The penetration test

should be scoped properly and should take advantage of the knowledge that the client

organization has regarding exposures within their enterprise. And this information should

be combined with the experience and insight of the penetration testing company.

The goal of penetration testing is to compromise a target system and ultimately steal

information. Penetration testing is focused on finding security vulnerabilities in a target

environment that could let an attacker penetrate the network or computer systems. A

collaborative approach is recommended whereby the financial services organization and

the penetration testing organization work together to more efficiently identify which

exploits can be leveraged to steal information.

VI. REFERENCES

[1]. Halfond WGJ, Orso A. Improving test case generation for web applications using

automated interface discovery. Proceedings of the Symposium on the Foundations of

Software Engineering, Dubrovnik, Croatia, September 2007.

[2]. Halfond WGJ, Viegas J, Orso A. A classification of SQL-injection attacks and

countermeasures. Proceedings of the International Symposium on Secure Software

Engineering, Washington, DC, U.S.A., March 2006.

[3]. Christensen AS, Møller A, Schwartzbach MI. Precise analysis of string expressions.

Proceedings of theInternational Static Analysis Symposium, San Diego, CA, U.S.A.,

June 2003; 1–18.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

[4]. Halfond WGJ, Orso A, Manolios P. Using positive tainting and syntax-aware

evaluation to counter SQL injection attacks. Proceedings of the Symposium on the

Foundations of Software Engineering (FSE 2006), Portland, OR, U.S.A., November

2006; 175–185.

[5]. Halfond WGJ, Orso A, Manolios P. WASP: Protecting web applications using

positive tainting and syntax-aware evaluation. Transactions on Software Engineering

2008; 34(1):65–81.

[6]. Halfond WGJ, Orso A. AMNESIA: Analysis and Monitoring for NEutralizing SQL-

Injection Attacks. Proceedings of the International Conference on Automated Software

Engineering, Long Beach, CA, U.S.A., November 2005; 174–183.

[7]. Halfond WGJ, Orso A. Combining static analysis and runtime monitoring to counter

SQL-injection attacks. Proceedings of the International Workshop on Dynamic Analysis,

St Louis, MO, U.S.A., 2005; 22–28.

[8]. Pietraszek T, Berghe CV. Defending against injection attacks through context-

sensitive string evaluation. Proceedings of Recent Advances in Intrusion Detection,

Seattle, WA, U.S.A., September 2005.

[9]. Gould C, Su Z, Devanbu P. Static checking of dynamically generated queries in

database applications. Proceedings of the International Conference on Software

Engineering, Edinburgh, Scotland, May 2004; 645–654.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

[10]. Miller BP, Fredriksen L, So B. An empirical study of the reliability of UNIX utilities.

Communications of the ACM 1990; 33(12):32–44.

[11]. Sutton M, Greene A, Amini P. Fuzzing: Brute Force Vulnerability Discovery.

Addison-Wesley: Reading, MA, 2007.

[12]. Thompson HH. Application penetration testing. Symposium Security and Privacy

2005; 3(1):66–69.

[13]. Geer D, Harthorne J. Penetration testing: A duet. Proceedings of the Computer

Security Applications Conference,Las Vegas, NV, U.S.A., December 2002; 185–195.

[14]. Arkin B, Stender S. McGraw G. Software penetration testing. IEEE Security and

Privacy 2005; 3(1):84–87.

[15]. Bishop M. About penetration testing. IEEE Security and Privacy 2007; 5(6):84–87.

[16]. McAllister S, Kirda E, Kruegel C. Leveraging user interactions for in-depth testing of

web applications. Proceedings of the International Symposium on Recent Advances in

Intrusion Detection. Springer-Verlag: Berlin, Heidelberg, 2008; 191–210.

[17]. Martin M, Livshits B, Lam MS. Finding application errors and security flaws using

PQL: A program query language. Proceeding of the Conference on Object Oriented

Programming Systems Languages and Applications, San Diego, CA, U.S.A., October

2005; 365–383.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

[18]. Huang YW, Yu F, Hang C, Tsai CH, Lee DT, Kuo SY. Securing web application

code by static analysis and runtime protection. Proceedings of the International World

Wide Web Conference, New York, NY, U.S.A., May2004; 40–52.

[19]. Wassermann G, Su Z. Sound and precise analysis of web applications for injection

vulnerabilities. Proceedings of the Conference on Programming Language Design and

Implementation. ACM: New York, NY, U.S.A., 2007; 32–41.

[20]. Wassermann G, Su Z. Static detection of cross-site scripting vulnerabilities.

Proceedings of the International Conference on Software Engineering. ACM: New York,

NY, U.S.A., 2008; 171–180.

[21]. Wassermann G, Yu D, Chander A, Dhurjati D, Inamura H, Su Z. Dynamic test input

generation for web applications. Proceedings of the International Symposium on

Software Testing and Analysis, Seattle, WA, U.S.A.,July 2008.

[22]. Su Z, Wassermann G. The essence of command injection attacks in web

applications. Proceedings of the Symposium on Principles of Programming Languages,

Charleston, SC, U.S.A., January 2006; 372–382.

[27]. Mesbah A, Bozdag E, van Deursen A. Crawling Ajax by inferring user interface

state changes. In Proceedings of the International Conference on Web Engineering,

Schwabe D, Curbera F, Dantzig P (eds.). IEEE Computer Society: Washington, DC,

2008; 122–134.

International Journal of Enterprise Computing and Business
Systems

ISSN (Online) : 2230-8849

http://www.ijecbs.com

Vol. 2 Issue 1 January 2012

[28]. Mesbah A, van Deursen A. Invariant-based automatic testing of Ajax user

interfaces. Proceedings of the 31st International Conference on Software Engineering

(ICSE09) (Research Papers). IEEE Computer Society: Washington, DC, 2009;

[29]. http://www.OWASP.org

[30] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,S. Wallace, V. J. Reddi

and K. Hazelwood, “Pin: building customized program analysis tools with dynamic instru-

mentation,” Proc. of the ACM SIGPLAN Conf. on Programming Language Design and

Implementation (PLDI), pp. 190–200, 2005.

[31] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic

binary instrumentation,” SIGPLAN Not., Vol. 42, No. 2, pp. 89–100, 2007.

[32] J. Newsome and D. Song, “Dynamic taint analysis for au-tomatic detection,

analysis, and signature generation of ex-ploits on commodity software,” Proc. of the 12th

Sympo-sium on Network and Distributed System Security (NDSS),2005.

[33] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou and Y. Wu,“LIFT: A Low-Overhead Practical

Information Flow Track-ing System for Detecting Security Attacks,” Proc. of the 39th

Annual IEEE/ACM International Symposium on Mi-croarchitecture, pp. 135–148, 2006.

